## Chapter structure

- 7.1 Van Vleck’s Two Books and the Quantum Revolution
- 7.2 Van Vleck’s Early Life and Career
- 7.3 The NRC
*Bulletin* - 7.4 New Research and the Move to Wisconsin
- 7.5 The Theory of Electric and Magnetic Susceptibilities
- 7.6 Kuhn Losses Revisited
- Abbreviations and Archives
- Acknowledgments
- References
- Footnotes

#
7
Kuhn Losses Regained: Van Vleck from Spectra to

Susceptibilities

*Charles Midwinter*,
*Michel Janssen*

## 7.1 Van Vleck’s Two Books and the Quantum Revolution

#### 7.1.1 Van Vleck’s Trajectory from Spectra to Susceptibilities, 1926–1932

“The chemist is apt to conceive of the physicist as some one who is so entranced in spectral lines that he closes his eyes to other phenomena.” This observation was made by the American theoretical physicist John H. Van Vleck (1899–1980) in an article on the new quantum mechanics in *Chemical Reviews* (Van Vleck 1928b, 493). Only a few years earlier, Van Vleck himself would have fit this characterization of a physicist to a tee. Between 1923 and 1926, as a young assistant professor in Minneapolis, he spent much of his time writing a book-length *Bulletin* for the National Research Council (NRC) on the old quantum theory (Van Vleck 1926b). As its title, *Quantum Principles and Line Spectra*, suggests, this book deals almost exclusively with spectroscopy. Only after a seemingly jarring change of focus in his research, a switch to the theory of electric and magnetic susceptibilities in gases, did he come to consider his previous focus myopic. In 1927–28, now a full professor in Minnesota, he published a three-part paper on susceptibilities in *Physical Review* (Van Vleck 1927a; 1927b; 1928a). This became the basis for a second book, *The Theory of Electric and Magnetic Susceptibilities* (Van Vleck 1932b), which he started to write shortly after he moved to Madison, Wisconsin, in the fall of 1928.

By the time he wrote his article in *Chemical Reviews*, Van Vleck had come to recognize that a strong argument against the old and in favor of the new quantum theory could be found in the theory of susceptibilities, a subject of marginal interest during the reign of the old quantum theory. As he wrote in the first sentence of the preface of his 1932 book:

The new quantum mechanics is perhaps most noted for its triumphs in the field of spectroscopy, but its less heralded successes in the theory of electric and magnetic susceptibilities must be regarded as one of its great achievements. (Van Vleck 1932b, vii)

What especially struck Van Vleck was that, to a large extent, the new quantum mechanics made sense of susceptibilities not by offering new results, but by reinstating classical expressions that the old quantum theory had replaced with erroneous ones. Both in his articles of the late 1920s and in his 1932 book, Van Vleck put great emphasis on this point.

His favorite example was the value of what he labeled
, a constant in the so-called

The constant also comes into play if we want to determine the dipole moment of a polar molecule such as HCl. Given a gas of these molecules, one can calculate using a measurement of the dielectric constant: the greater the value of , the smaller the value of . Because of the instability of the value of , Van Vleck (1928b) pointed out that, “[t]he electrical moment of the HCl molecule […] has had quite a history” (494).

Fig. (7.1) shows the table with which Van Vleck illustrated this checkered history. The result for whole quanta was found by

Fig. 7.1: The values of the constant in the Langevin-Debye formula and of the electric moment of HCl in classical theory, the old quantum theory, and quantum mechanics (Van Vleck 1928b, 494).

These observations, including the table, are reprised in his book on susceptibilities (Van Vleck 1932b, 107). In fact, these fluctuations in the values of and so impressed Van Vleck that the first two columns of this table can still be found in his 1977 Nobel lecture (Van Vleck 1992b, 356).

Van Vleck’s 1932 book on susceptibilities was much more successful than his *Bulletin* on the old quantum theory, which was released just after the quantum revolution of 1925–26. The *Bulletin*, as its author liked to say with characteristic self-deprecation, “*in a sense* was obsolete by the time it was off the press” (Van Vleck 1971, 6, our emphasis). The italicized qualification is important. In the late 1920s and early 1930s, physicists could profitably use the *Bulletin* *despite* the quantum revolution. The 1932 book, however, became a classic in the field it helped spawn. Interestingly, given that it grew out of work on susceptibilities in gases, the field in question is solid-state physics. In a biographical memoir about Van Vleck for the National Academy of Sciences (NAS), condensed-matter icon

In this paper we follow Van Vleck’s trajectory from his 1926 *Bulletin* on spectra to his 1932 book on susceptibilities. Both books, as we will see, loosely qualify as textbooks. As such, they provide valuable insights about the way pedagogical texts written in the midst (the 1926 *Bulletin*) or the aftermath (the 1932 book) of a scientific revolution reflect such dramatic upheavals.

#### 7.1.2 Kuhn Losses, Textbooks, and Scientific Revolutions

The old quantum theory’s trouble with susceptibilities, masked by its success with spectra, is a good example of what is known in the history and philosophy of science literature as a *Kuhn loss*. Roughly, a *paradigm* as Kuhn would have preferred—that does not carry over to the theory or paradigm that replaced it. As illustrated by the recovery in the new quantum theory of the robust value for the constant
in the

Incidentally, both Thomas S. Kuhn and *The Structure of Scientific Revolutions*, it was Van Vleck who suggested that his student-turned-historian-and-philosopher-of-science be appointed director of the project that led to the establishment of the Archive for History of Quantum Physics (AHQP) (Kuhn et al. 1967, viii; see also Baltas et.al. 2000, 302–303).

In 1963,

I showed that the factor one-third [in theLangevin-Debye formula for susceptibilities] got restored in quantum mechanics, whereas in the old quantum theory, it had all kinds of horrible oscillations […] you got some wonderful nonsense, whereas it made sense with the new quantum mechanics. I think that was one of the strong arguments for quantum mechanics. One always thinks of its effect and successes in connection with spectroscopy, but I remember Niels Bohr saying that one of the great arguments for quantum mechanics was its success in these non-spectroscopic things such as magnetic and electric susceptibilities. ^{1}

To the best of our knowledge, Kuhn never used the “wonderful nonsense” Van Vleck is referring to here as an example of a Kuhn loss. Still, one can ask whether the example bears out Kuhn’s general claims about *Structure* about how scientific revolutions are papered over in subsequent textbooks, the prehistory of the theory of susceptibilities, including the Kuhn loss the old quantum theory suffered in this area, is dealt with *at length* in Van Vleck’s 1932 book. However, we will also see that, in at least one important respect, Van Vleck’s version of this prehistory is a little misleading and perhaps even a tad self-serving, which is just what Kuhn would have led us to expect. In general, there is much of value in Kuhn’s account, which thus provides a good starting point for our analysis. Ultimately, our goal is not to argue for or against Kuhn but to use the fine structure of the quantum revolution to learn more about the structure of scientific revolutions in general.^{2}

#### 7.1.3 Kuhn Losses

The concept of a *Structure* (Kuhn 1996, 103–110; page numbers refer to the 3rd edition). To underscore that science does not develop cumulatively, Kuhn noted that in going from one paradigm to another there tend to be gains as well as losses. “[P]aradigm debates,” he wrote, “always involve the question: Which problems is it more significant to have solved?” (ibid., 110).

In the transition from classical theory to the old quantum theory, gains in spectroscopy apparently outweighed losses in the theory of susceptibilities just as, at least until the early 1920s, they outweighed losses in dispersion theory. The former Kuhn loss was only regained in the new quantum theory,^{3} while the latter was recovered in the dispersion theory of

Strictly speaking, of course, when we talk about *disciplinary matrix*, the term Kuhn in his 1969 postscript to *Structure* proposed to substitute for the term ‘paradigm’ when used in the sense in which we need it here (Kuhn 1996, 182). Granted that assumption, we can continue to talk about Kuhn losses in transitions from one *theory* to another.

Although they are both Kuhn losses of the old quantum theory, the one in susceptibility theory is of a different kind than the one in dispersion theory. In the case of dispersion, there was clear experimental evidence all along for the key feature of the classical theory that was lost in the old quantum theory and recovered in the *after* it was recovered in the new quantum theory.

The key feature in the case of dispersion is that anomalous dispersion—the phenomenon that in certain frequency ranges the index of refraction gets smaller rather than larger with increasing frequency^{4}—occurs around the absorption frequencies of the dispersive medium. This is in accordance with the classical dispersion theories of

[T]he positions of maximal dispersion and absorption do not lie at the position of the emission lines of hydrogen but at the position of the mechanical frequencies of the model […]the conclusion seems unavoidable to us that the foundations of the Debye-Davysson[sic]theory are incorrect. (Epstein 1922, 107–108; emphasis in the original; quoted and discussed by Duncan and Janssen 2007, 580–581)

By contrast, it was only *after* the new quantum theory had restored the classical value
in the

When *if the classical formula for the dielectric constant gives a dipole length that is greater than the nuclear separation extracted from infrared spectra, the formula must be rejected*” (Pauli 1921, 327, emphasis in the original).

Three years later, the experimentalist ^{5}

#### 7.1.4 Textbooks and Kuhn Losses

Kuhn (1996, chap. 11) famously identified textbooks as the main culprit in rendering the disruption of normal science by scientific revolutions invisible. Textbooks, he argued, by their very nature must present science as a cumulative enterprise. This means that

address themselves to an already articulated body of problems, data, and theory, most often to the particular set of paradigms^{6}to which the scientific community is committed at the time they are written […] [B]eing pedagogic vehicles for the perpetuation of normal science […] [they] have to be rewritten in the aftermath of each scientific revolution, and, once rewritten, they inevitably disguise not only the role but the very existence of the revolutions that produced them […] [thereby] truncating the scientist’s sense of his discipline’s history. (Kuhn 1996, 136–137)

When he wrote this passage, *Structure*, however, his claims about textbooks had better hold up for books used as such in the period and the field we are considering.

The two monographs by Van Vleck examined in this paper would seem to qualify as (graduate) textbooks even though under a strict and narrow definition of the genre they might not. Most of their actual readers may have been research scientists but they were written with the needs of students in mind and both books saw some classroom use. Student notes for a two-semester course on quantum mechanics that Van Vleck offered in Wisconsin in 1930–31 show that, despite the quantum revolution that had supposedly made it obsolete four years earlier, Van Vleck was still using his NRC *Bulletin* as the main reference for almost two-thirds of the first semester.^{7} It is unclear whether Van Vleck himself ever used his 1932 book on susceptibilities in his classes. However, one of his colleagues at Wisconsin, ^{8}

So one can reasonably ask how well Van Vleck’s two books fit with Kuhn’s seductive picture of how the regrouping of a scientific community in response to a scientific revolution is reflected in the textbooks it produces. It will be helpful to separate two aspects of this picture: how textbooks delineate and orient further work in their (sub-)disciplines, and how, in doing so, they inevitably distort the prehistory of these (sub-)disciplines and paper over

Van Vleck’s NRC *Bulletin* confirms several of his former student’s generalizations about textbooks. The *Bulletin* is organized around the correspondence principle as a strategy for tackling problems mostly in atomic spectroscopy. Van Vleck thus took the approach he,

Those engaged in work that was marginalized in this way predictably took exception. In a review of the *Bulletin*, one such colleague,

Selection of, arrangement of, and space devoted to the offerings is heavily influenced by subjective viewpoints and cannot win every reader’s approval everywhere. Instead of the presumably available option of letting all fundamental connections emerge systematically, the author has preferred to put up front what is felt to be the internally most unified part of the quantum theory as it has developed so far, followed by more or less isolated applications to specific problems. (Smekal 1927, 63)

The way in which correspondence-principle techniques take center stage in Van Vleck’s book provides a nice example of how textbooks transmit what *Structure* called *exemplars*, the “entirely appropriate [meaning] both philologically and autobiographically” of the term ‘paradigm’ (Kuhn 1996, 186–187). By an exemplar, Kuhn wrote,

I mean, initially, the concrete problem solutions that students encounter from the start of their scientific education, whether in laboratories, on examinations or at the ends of chapters in science texts. To these shared examples should, however, be added at least some of the technical problem-solutions found in the periodical literature that scientists encounter during their post-educational research careers and that also show them by example how their job is to be done. (Kuhn 1996, 187)

Van Vleck’s *Bulletin* presented such “technical problem-solutions found in the periodical literature” in a more didactic text that should help its readers become active contributors to this literature themselves.

Confirming another article of Kuhnian doctrine, the problem with susceptibilities, a *Bulletin*. Van Vleck may have forgotten about the problem, but there is clear evidence that he had been aware of it earlier. In a term paper of 1921, entitled “Theories of magnetism,” for a course he took with

Whereas the *Bulletin* passes over the Kuhn loss in the theory of susceptibilities in silence, the Kuhn loss in dispersion theory in that same transition is flagged prominently. It is easy to understand why. By the time Van Vleck wrote his *Bulletin*,

In his 1932 book, as we will see in secs. (7.5.2–7.5.5), Van Vleck made even more elaborate use of the recovered Kuhn loss in susceptibility theory to promote his new quantum-mechanical treatment of susceptibilities. He devoted a whole chapter of the book to the problems of the old quantum theory in this area. Of course, the

Like the *Bulletin*, the 1932 book provided its readers with all the tools they needed to become researchers in the field it so masterfully mapped out for them. Had the correspondence-principle approach to atomic physics been moribund by the time the *Bulletin* saw print, the approach to electric and magnetic susceptibilities championed in the 1932 book would prove to be remarkably fruitful.

#### 7.1.5 Continuity and Discontinuity in Scientific Revolutions

A couple of *without* the kind of wholesale distortion and suppression of the prehistory of their subject matter that Kuhn claimed are unavoidable. That is not to say that such distortion and suppression were or could have been completely avoided.

The 1932 book provides the clearest example of this. As mentioned above, Van Vleck devoted an entire chapter to the old quantum theory, putting the problems it ran into with susceptibilities on full display. Yet he conveniently neglected to mention that there had been no clear empirical evidence exposing these problems.

*Bulletin* suggests that in 1926 Van Vleck did not completely steer clear of distorting the history of his subject either. Smekal had been championing an alternative dispersion theory, which he complained was “completely misunderstood and distorted” (Smekal 1927, 63) in the one paragraph Van Vleck (1926b, 159) devoted to it. Whether or not this complaint was well-founded, it would have been counterproductive in terms of Van Vleck’s pedagogical objectives to cover Smekal’s and other competing theories of dispersion to their proponents’ satisfaction.

That said, there were many elements in older theories that helped rather than hindered Van Vleck in achieving these objectives. As a result, much of the continuity that can be discerned in the discussions of classical theory and quantum theory in the NRC *Bulletin* is *not*, as Kuhn would have it, an artifact of how history is inevitably rewritten in textbooks, but actually matches the historical record tolerably well. Despite its misleading treatment of the experimental state of affairs in the early 1920s, the same can be said about the 1932 book. The final two clauses of the passage from *Structure* quoted above (“inevitably disguise […]” and “truncating […]”) are clearly too strong.

On the Kuhnian picture of scientific revolutions as paradigm shifts akin to Gestalt switches, it is hard to understand how a post-revolutionary textbook could make the prehistory of its subject matter look more or less continuous and thereby perfectly suitable to its pedagogical objectives *without* seriously disguising, distorting, and truncating that prehistory. An important part of the explanation, at least in the case of these two books by Van Vleck, is the continuity of mathematical techniques through the conceptual upheavals that mark the transition from classical theory to the old quantum theory, and finally to modern quantum mechanics.

In his recent book, *Crafting the Quantum*, on the Sommerfeld school in theoretical physics, Suman Seth (2010) makes a similar point. He reconciles the continuous and the discontinuous aspects of the development of quantum theory in the 1920s by emphasizing, as we do, the continuity of mathematical techniques. Scientific revolutions, he writes, “are revolutions of conceptual foundations, not of puzzle-solving techniques. Most simply: Science sees revolutions of principles, not of problems” (Seth 2010, 268). To illustrate his point, Seth quotes Arnold Sommerfeld, who wrote in 1929: “The new development does not signify a revolution, but a joyful advancement of what was already in existence, with many fundamental clarifications and sharpenings” (ibid., 266).

Given the radical conceptual changes involved in the transition from classical physics to quantum physics, it is important to keep in mind that there was at the same time great continuity of mathematical structure in this transition. Both the old quantum theory and matrix mechanics, for instance, retain, in a sense, the laws of classical physics. The old quantum theory just put some additional constraints on the motions allowed by Newtonian mechanics. The basic idea of matrix mechanics, as reflected in the term *Umdeutung* (reinterpretation) in the title of the paper with which *repeal* the laws of mechanics but to *reinterpret* them. Heisenberg took the quantities related by these laws to be arrays of numbers, soon to be recognized as matrices (Duncan and Janssen 2007; 2008). It is this continuity of mathematical structure that undergirds the continued effectiveness of the mathematical tools wielded in the context of these different theories.

In the old quantum theory, techniques from perturbation theory in celestial mechanics were used to analyze electron orbits in atoms classically as a prelude to the translation of the results into quantum formulas under the guidance of the correspondence principle (Duncan and Janssen 2007, 592–593, 627–637). This is the procedure that led *Bulletin*. It inspired the closely related perturbation techniques in matrix mechanics developed in the famous *Dreimännerarbeit* of

One way to highlight the continuity of Van Vleck’s trajectory from spectra to susceptibilities is to note that the derivation of the *Bulletin*, and the derivation of the

The remarkable continuity of mathematical structures and techniques in the transitions from classical theory to the old quantum theory, and then to modern quantum mechanics makes it perfectly understandable that Van Vleck could still use his 1926 *Bulletin* in his courses on quantum mechanics in the early 1930s. It also explains how Van Vleck could make such rapid progress once he hit upon the problem of susceptibilities not long after he completed the *Bulletin* and mastered matrix mechanics.

Kuhn had a tendency to see only discontinuity in paradigm shifts. This intense focus on discontinuity is what lies behind his fascination with

Whether one sees continuity or discontinuity in the transition from classical physics to quantum physics depends, to a large extent, on one’s perspective. The historian trying to follow the events as they unfolded on the ground, will probably mainly see continuities. The historian who takes a bird’s eye view and compares the landscapes before and after the transition will most likely be struck first and foremost by discontinuities. A final twist in our story about the recovered Kuhn loss in Van Vleck’s 1932 book nicely illustrates this difference in perspective.

Van Vleck covered the troublesome recent history of its subject matter in chap. V, “Susceptibilities in the old quantum theory contrasted with the new.” This chapter, as we will show in more detail in secs. (7.5.2–7.5.5), allows us to see important elements of continuity in the transition from the old to the new quantum theory. Toward the end of his life, Van Vleck began revising his 1932 classic with the idea of publishing a new edition (Fellows 1985, 258, 262–263, 266).^{9} Wanting to add a chapter on modern developments without changing the total number of chapters, he intended to cut chap. V, on the grounds that by then it only had historical value.^{10} Even in 1932 he began the chapter apologizing to his readers that “it may seem like unburying the dead to devote a chapter to the old quantum theory” (Van Vleck 1932b, 105). Note also the one reservation Anderson (1987, 509) expressed about the book in his NAS memoir: “It is marked—perhaps even slightly marred, as a modern text for physicists poorly trained in classical mechanics—by careful discussion of the ways in which quantum mechanics, the old quantum theory, and classical physics differ.” As it happened, the new edition of the book never saw the light of day, but if it had, it would have been a confirming instance of an amended version of Kuhn’s thesis, namely that, going through multiple editions, textbooks *eventually* suppress or at least sanitize the history of their subject matter and paper over

#### 7.1.6 Van Vleck as Teacher

Although it will be clear from the preceding subsections that our main focus in this paper is not on Van Vleck’s books as pedagogical tools, it seems appropriate to devote a short subsection to Van Vleck as a teacher.

A good place to start is to compare testimony by

By the 1940s […] his teaching style had become unique, and is remembered with fondness by everyone I spoke to. Most of the material was written in his inimitable scrawl on the board […] Especially in group theory [taught from (Wigner 1931) in the original German], his intuitive feeling for the subject often bewildered us as he scribbled […] in an offhand shorthand to demonstrate what we thought were exceedingly abstruse points. (Anderson 1987, 524)

Anderson’s assessment is actually consistent with Kuhn’s, even though the latter evidently did not share his fellow student’s enthusiasm for the unique style of their advisor: “One of the courses that I then took was group theory with Van Vleck. And I found that somewhat confusing […] Van Vleck was not a terribly good teacher” (Baltas et.al. 2000, 272).

Van Vleck’s teaching style must have been less idiosyncratic in his earlier years. As *Los Alamos Primer*:

John Van Vleck was my professor at Wisconsin. The first year I was there he gave a course in quantum mechanics. No one wanted to take a degree that year. Everyone put it off because it was useless—there weren’t any jobs. The next year Van had the same bunch of students, so he gave us advanced quantum mechanics. The year after that he gave us advanced quantum mechanics II. Van was extremely good, a good teacher and an outstanding physicist.^{11}(Serber 1992, xxiv)

Anderson offered the following explanation for Van Vleck’s effectiveness as a teacher:

In all of his classes […] he used two basic techniques of the genuinely good teacher. First, he presented a set of carefully chosen problems […] Second, he supplied a “crib” for examination study, which we always thought was practically cheating, saying precisely what could be asked on the exam. It was only after the fact that you realized that it contained every significant idea of the course. (Anderson 1987, 524–525)

Fig. 7.2: Van Vleck between two fans at 1300 Sterling Hall, University of Wisconsin–Madison, ca. 1930 (picture courtesy of John Comstock).

Even before the Great Depression, students sometimes took Van Vleck’s quantum course more than once.

In his first year at Madison, 1928–29, Van Vleck immediately started supervising two postdocs, ^{12} He co-authored papers with several of them, mostly related to his work on susceptibilities. Contributions by all four are acknowledged in his 1932 book. After its publication, Van Vleck continued to pursue research on susceptibilities, often in collaboration with students and postdocs (Van Vleck 1971, 13, 17). In fact, in 1932, ten graduate students (among them

Physics 212, “Quantum mechanics and atomic structure,” was the only lecture course Van Vleck offered during his first few years in Wisconsin (ibid., 230). It was not until 1931–33, the period described by

#### 7.1.7 Structure of Our Paper

The balance of this paper is organized as follows. In sec. (7.2), we sketch Van Vleck’s early life against the backdrop of theoretical physics coming of age and maturing in the United States. Our main focus is on his years in Minneapolis leading up to the writing of his NRC *Bulletin* (1923–26). Throughout the paper, but especially in the more biographical secs. (7.2) and (7.4), we make heavy use of the superb dissertation on Van Vleck by Fred Fellows (1985). In sec. (7.3), we turn to the *Bulletin* itself (Van Vleck 1926b). In sec. (7.3.1), we recount how what had originally been conceived as a review article of average length eventually ballooned into a 300-page book. In sec. (7.3.2) we give an almost entirely qualitative discussion of its contents, focusing on the derivation of *Bulletin*’s publication, his move from Minneapolis to Madison, and the development of his expertise in the theory of susceptibilities. In sec. (7.5), we discuss his book on susceptibilities (Van Vleck 1932b). The structure of sec. (7.5) mirrors that of sec. (7.3). In sec. (7.5.1), we recount how Van Vleck came to write his second book. In secs. (7.5.2–7.5.5), we discuss its content, not just qualitatively in this case but carefully going through various derivations. We focus on the vicissitudes of the

## 7.2 Van Vleck’s Early Life and Career

John Hasbrouck Van Vleck (1899–1980) was born in Middletown, Connecticut, to Edward Burr Van Vleck and Hester Laurence Van Vleck (*née* Raymond). In 1906 the family moved to Madison, Wisconsin, where his father was appointed professor of mathematics.^{13} He had been named after his grandfather, John Monroe Van Vleck, but his mother, not fond of her father-in-law, called him Hasbrouck (Fellows 1985, 6–8). To his colleagues, he would always be Van. A nephew of Van’s wife, Abigail June Pearson (1900–1989), recalls that a telegram from Japan congratulating Van Vleck on winning the Nobel prize was addressed to “Professor Van” (John Comstock, private communication).

In 1916 Van Vleck began his undergraduate studies at the University of Wisconsin, where he eventually majored in physics. In the fall of 1920, he enrolled at Harvard as a graduate student in physics.^{14} He took *Atombau und Spektrallinien* (Sommerfeld 1919).^{15} Kemble’s 1917 dissertation had been the first predominantly theoretical dissertation in the United States. Even *Philosophical Magazine* (Van Vleck 1922), was on a “crossed-orbit” model of the helium atom, and he had worked with Kemble to calculate the specific heat of hydrogen shortly afterward. Neither of these calculations had agreed well with experiment, but at the time Van Vleck’s results were among the best to be found. It would take the advent of matrix mechanics in 1925 before the crossed orbit model was superseded, and before theoretical predictions for the specific heat of hydrogen could be brought into alignment with experiment (Gearhart 2010).^{16}

The following year, Van Vleck accepted a position as an instructor in Harvard’s physics department. This demanding job left him with little time for his own work. Most of his time was spent preparing for lectures and lab sessions (Fellows 1985, 49). In the midst of this daily grind, the job offer that arrived from the University of Minnesota in early 1923 must have looked especially attractive. As Van Vleck (1992a, 351) would reflect later, it was an “unusual move” for such an institution at that time—indicative, one may add, of the American physics community’s growing recognition of the importance of quantum theory—to offer him an assistant professorship “with purely graduate courses to teach.”

At first, Van Vleck was hesitant to accept the position.^{17} He and

In October 1924, after a preliminary report in the *Journal of the Optical Society of America* (Van Vleck 1924a), a two-part paper appeared in *Physical Review* in which Van Vleck (1924b; 1924c) used correspondence-principle techniques to analyze the interaction between matter and radiation in the old quantum theory. Its centerpiece was Van Vleck’s own correspondence principle for absorption, but the paper also contains a detailed derivation of the *Umdeutung* paper can be seen as a natural extension of the correspondence-principle techniques used by Kramers, Born, and Van Vleck (see sec. 7.3.2 below and Duncan and Janssen 2007).

After his 1924 paper, however, Van Vleck did not push this line of research any further. He had meanwhile been ‘invited’ to produce the volume to which we now turn our attention. Its completion would occupy nearly all of his available research time for the next two years.

## 7.3 The NRC *Bulletin*

#### 7.3.1 Writing the *Bulletin*

Later in life, when interviewed by *Bulletin* over the course of about two years:

I was already writing some chapters on that on rainy days in Switzerland in 1924. I would say I started writing that perhaps beginning in the spring of 1924, and finished it in late 1925. I worked on it very hard that summer […] I was sort of a “rara avis” at that time. I was a young theoretical physicist presumably with a little more energy than commitments than the older people interested in these subjects, so they asked me if I’d write this thing. I think it was by invitation rather than by my suggestion.^{18}

The invitation had come from *was* a feeling among the more sophisticated of the American physicists that we were behind in knowing what was going on in theoretical physics in Europe.”^{19}

The committees organized the *Bulletins* of the NRC, which existed to present “contributions from the National Research Council […] for which hitherto no appropriate agencies of publication [had] existed” (Swann et.al. 1922, 173–174). This sounds rather vague and overly inclusive, and on reading the motley assortment of topics covered by the *Bulletins* through 1922, one finds that it *was* rather vague and overly inclusive. The *Bulletins* served to disseminate whatever information the myriad committees deemed important. A brief list of topics covered by these publications includes “The national importance of scientific and industrial research,” “North American forest research,” “The quantum theory,” “Intellectual and educational status of the medical profession as represented in the United States Army,” and “The scale of the universe” (ibid.). The *Bulletins* tended to be short, averaging about 75 pages. Several were even shorter, coming in under 50 pages. The longest at the time Van Vleck was invited to write one on line spectra was a 172-page book, *Electrodynamics of Moving Media* (Swann et.al. 1922). It had been written by four authors, including

Given the *Bulletin*’s publication history, Van Vleck was not making an unreasonable commitment when he accepted ^{20} It is unclear exactly how the paper spiraled out of control and became the quagmire of a project that consumed over two years of his available research time, but an interesting story is suggested by his correspondence.

As we saw, Van Vleck later recalled having begun his *Bulletin* in the spring of 1924, but he must have started much earlier than that. In March 1924, Foote returned a draft to Van Vleck along with extensive comments. “This has been read very carefully by ^{21} Foote was probably distancing himself from Ruark’s remarks not only because of their severity, but also because of their sheer volume. The “suggestions” amounted to 33 pages of typed criticism. Van Vleck’s handwritten reactions are recorded in the margins of Ruark’s commentary (preserved in the AHQP). Exclamation points and question marks abound, often side by side, punctuating Van Vleck’s surprise and confusion. Here and there, he makes an admission when a suggestion seems prudent. For the most part, however, Ruark’s suggestions are calls for additional details and clarification, more derivations, in short, a significant broadening of the “article.” As one reads on, Van Vleck’s annotations become less and less frequent. When they appear at all, they often amount to a single question mark. One gets the impression of a young physicist brow-beaten into submission. This is likely what precipitated the transformation of Van Vleck’s *Principles* from review article to full-fledged book.

Perhaps

Like you I “am wondering” when my paper for the Research Council will ever be ready. I am sorry to be progressing so slowly but I hope you realize that I am devoting to this report practically all of my time not occupied with teaching duties. I still hope to have the manuscript ready by Christmas except for finishing touches.^{22}

Van Vleck would blow the Christmas deadline as well. It was not until August that he submitted a new draft:

I hope the bulletin will be satisfactory, as with the exception of one three-month period it has taken all my available research time for two years.

You wrote me that the bulletin should be “fairly complete.” My only fear is that it may be too much so. I made sure to include references to practically all the important theoretical papers touching on the subjects covered in the various chapters. Four new chapters have been included since an early draft of the manuscript was sent to you a year ago […]

You will note that I have used a new title “Quantum Principles and Line-Spectra” as this is much briefer and perhaps more a-propos than “The Fundamental Concepts of the Quantum Theory of Line-Spectra.”^{23}

It is worth noting the change in title. The old quantum theory was strongly focused on the phenomena of line spectra. Van Vleck’s new title conveys at once this focus even as he had significantly broadened the scope of his project.

Even when *Bulletin*. “I have added 13 pages of manuscript […] in which I have tried to summarize the work of ^{24}

It is clear that however the project began, and whatever Van Vleck’s initial expectations, in the end the *Bulletin* was intended by its author as a comprehensive and up-to-date review of quantum theory. This makes it useful not only as a review of the old quantum theory, but also as a window into Van Vleck’s own perception and understanding of the field.

Despite some critical notes,^{25} the *Bulletin* was “on the whole, well-received” (Fellows 1985, 88). Van Vleck must have read *Bulletin* in the *Journal of the Optical Society of America* with special interest, given Ruark’s litany of complaints about an early draft of it. Ruark praised the final version as a thorough, clearly written, state-of-the-art survey of a rapidly changing field:^{26}

This excellent bulletin will prove extremely useful to all who are interested in atomic physics […] [T]he fundamental theorems of Hamiltonian dynamics and perturbation methods of quantization are treated in a very readable fashion […] The chapter on the quantization of neutral helium is authoritative […] The author’s treatment of the “correspondence principle” is refreshingly clear […] The whole book is surprisingly up-to-date. Even the theory of spinning electrons and matrix dynamics are touched upon. It is to be hoped that this report will run through many revised editions as quantum theory progresses, for it fills a real need. (Ruark 1926)

In fact, *Bulletin* to showcase the power of the correspondence principle:

Many readers will not agree with the author’s conclusion that“Kramers’s dispersion theory […] furnishes by far the most satisfactory theory of dispersion” [Van Vleck 1926b, 156–157] […] the reviewer believes that a final solution cannot be achieved until we have a much more thorough knowledge of the dispersion curves of monatomic gases and vapors. (Ruark 1926)

Subsequent developments would prove that Van Vleck’s confidence in the Kramers dispersion formula was well-placed. It carried over completely intact to the new quantum mechanics (Duncan and Janssen 2007, 655).

#### 7.3.2 The *Bulletin* and the Correspondence Principle

The central element in Van Vleck’s presentation of the old quantum theory in his NRC *Bulletin* is the correspondence principle. It forms the basis of 11 out of a total of 13 chapters.^{27} As it says in the preface,

Bohr’s correspondence principle is used as a focal point for much of the discussion in Chapters I–X. In order to avoid introducing too much mathematical analysis into the discussion of the physical principles underlying the quantum theory, the proofs of certain theorems are deferred to Chapter XI, in which the dynamical technique useful in the quantum theory is summarized. (Van Vleck 1926b, 3)

By the early 1920s, the correspondence principle had become a sophisticated scheme used by several researchers for connecting formulas in classical mechanics to formulas in the old quantum theory. The most important result of this approach was the *Nature*. As we mentioned in sec. (7.2), *Umdeutung* paper written in the summer of 1925 (Duncan and Janssen 2007, 554).

As a concrete example of the use of the correspondence principle in the old quantum theory in the early 1920s, we sketch Van Vleck’s derivation of the Kramers dispersion formula.^{28} This formula and what Van Vleck (1926b, 162) called the “correspondence principle for dispersion” are presented in a section of only two and a half pages in chap. X of the NRC *Bulletin* (ibid., sec. 51, 162–164). The reason that Van Vleck could be so brief at this point is that the various ingredients needed for the derivation of the formula are all introduced elsewhere in the book, especially in chap. XI on mathematical techniques. At 50 pages, this is by far the longest chapter of the *Bulletin*.

Consider some (multiply-)periodic system—anything from a charged simple harmonic oscillator to an electron orbiting a nucleus—struck by an electromagnetic wave of a frequency
not too close to that system’s characteristic frequency
or frequencies
. The

To obtain the

As with all such derivations in the old quantum theory, the part involving classical mechanics called for advanced techniques borrowed from celestial mechanics. As we mentioned in sec. (7.2), Van Vleck had thoroughly mastered these techniques as a graduate student at Harvard. Decades later, when the Dutch Academy of Sciences awarded him its prestigious Lorentz medal, Van Vleck related an anecdote in his acceptance speech that demonstrates his early mastery of this material:

In 1924 I was an assistant professor at the University of Minnesota. On an American trip,[Paul] Ehrenfest gave a lecture there […] [He] said he would like to hear a colloquium by a member of the staff. I was selected to give a talk on my “Correspondence Principle for Absorption” [Van Vleck 1924a, 1924b, 1924c] […] I remember Ehrenfest being surprised at my being so young a man. The lengthy formulas for perturbed orbits in my publication on the three-body problem of the helium atom [Van Vleck 1922] had given him the image of a venerable astronomer making calculations in celestial mechanics. (Van Vleck 1974, 9; quoted by Duncan and Janssen 2007, 627)

Van Vleck put his expertise in classical mechanics to good use. Using canonical perturbation theory in action-angle variables, he derived an expression in classical mechanics for the dipole moment of a charged multiply-periodic system hit by an electromagnetic wave of small amplitude, which could then be translated into a quantum-theoretical expression.

In general coordinates and their conjugate momenta (where , with the number of degrees of freedom), Hamilton’s equations are:

7.1 |

where
is the Hamiltonian and dots indicate time derivatives. Given the Hamiltonian of some multiply-periodic system, one can often find special coordinates,
, called *action-angle variables*, such that the Hamiltonian in the new coordinates only depends on the new momenta, the action variables
, and not on the new coordinates, the angle variables
. In that case,

7.2 |

The first of these equations shows what makes the use of action-angle variables so attractive in celestial mechanics. It makes it possible to extract the characteristic periods of the system from the Hamiltonian without having to know the details of the orbit.

Action-angle variables played a central role in the old quantum theory. They are used to formulate the

7.3 |

where
is

For orbits with high values for all quantum numbers, there is only a small difference between the values of the Hamiltonian for and for (with the values of all ’s with fixed). The differential quotients in the first equation in eq. (7.2) can then be approximated by difference quotients:

7.4 |

The two values of the Hamiltonian in the numerator give the energies and of two orbits, close to each other, with high values for all quantum numbers (all, except for the -th one, equal for the two orbits). Eq. (7.4) is thus of the form:

7.5 |

In the limit of high quantum numbers, this equation for the orbital frequency
of the electron—and thereby, according to classical electrodynamics, the frequency of the radiation emitted because of the electron’s acceleration in that orbit—coincides with

7.6 |

for the frequency of the radiation emitted when an electron jumps from an initial orbit (quantum number ) to a final orbit (quantum number ). This asymptotic connection between this classical formula for the orbital frequencies and Bohr’s quantum formula for the radiation frequencies is what Van Vleck (1926b, sec. 11, 23–24) called “the correspondence theorem for frequencies.”

Such asymptotic connections can be used in two ways, either to *check* that a given quantum formula reduces to its classical counterpart in the limit of high quantum numbers, or to make an educated *guess* on the basis of the classical formula assumed to be valid for high quantum numbers as to what its quantum-theoretical counterpart, valid for all quantum numbers, might be. While *constructive* use, Van Vleck (1924b; 1924c; 1926b) preferred the former *corroborative* use (Duncan and Janssen 2007, 638–640). The correspondence theorem for frequencies is a good example of the corroborative use of correspondence-principle arguments, the ^{29}

To derive a formula for the classical dipole moment from which its counterpart in the old quantum theory can be constructed (or against which it can be checked), one treats the electric field of the electromagnetic wave striking the periodic system under consideration as a small perturbation of the system in the absence of such disturbances. The full Hamiltonian
is then written as the sum of an unperturbed part
and a small perturbation
(where ‘int’ stands for ‘interaction’). Using action-angle variables in such perturbative calculations, one can derive the formula for the classical dipole moment without having to know anything about the dynamics of the unperturbed system other than that it is solvable in these variables.^{30}

Once again, *not* action-angle variables for
, but one can still use them to describe the behavior of the full system with interaction.^{31} As we will see in sec. (7.5.3), Van Vleck (1932b, 38) likewise used action-angle variables for the unperturbed Hamiltonian in his later calculations of susceptibilities.^{32}

The classical formula Van Vleck eventually arrived at for the dipole moment of a multiply-periodic system has the form of a derivative with respect to the action variables
of an expression involving squares of the amplitudes of the Fourier components and the characteristic frequencies
of the motion of the unperturbed system. The correspondence principle, as it was understood by

**1**Replace the characteristic frequencies
, the orbital frequencies of the motion in the unperturbed multiply-periodic systems under consideration, by the frequencies
of the radiation emitted in the transition from the
-th to the
-th orbit.

**2**Replace squares of the amplitudes of the Fourier components of this motion by transition probabilities given by the
coefficients for spontaneous emission in the quantum theory of radiation proposed by

**3**Replace the derivatives with respect to the action variables
by difference quotients as in eq. (7.4). This last substitution is often attributed to Born but it was almost certainly discovered independently by Born, Kramers, and Van Vleck (Duncan and Janssen 2007, 637–638, 668).

Although this construction guarantees that the quantum formula merges with the classical formula for high quantum numbers, it still took a leap of faith to assert that the quantum formula would continue to hold all the way down to small quantum numbers. In the case of the Kramers dispersion formula, however, there were other considerations, besides this correspondence-principle argument for it, that inspired confidence in the result.

As mentioned in sec. (7.1.3), the Kramers dispersion formula amounted to the recovery of a

The recovery of this

The correspondence-principle translation scheme outlined above was central to the research in the early 1920s of both Van Vleck (1924b; 1924c) and Born (1924). In fact, their approaches were so similar that the two men had a testy correspondence about the proper assignment of credit for various results and insights (Duncan and Janssen 2007, 569–571, 638–639). Moreover, both Born (1925) and Van Vleck (1926b) wrote a book on the old quantum theory in which they organized the material covered around the correspondence principle as they had come to understand and use it in their research.^{33}

Both *Umdeutung* paper (Duncan and Janssen 2007, sec. 3.5, 593–596; sec. 8, 668). In doing so, Heisenberg abandoned electron orbits altogether and formulated his theory entirely in terms of quantum transitions, accepting, for the time being, that there was nothing in the theory to represent the states between which such transitions were supposed to take place. Born and

Since the *Umdeutung* scheme, he arrived at a corollary of the *Bulletin*, “appears to have first been incidentally suggested by the writer” (152). It can be found in a footnote in the classical part of his two-part paper on his correspondence principle for absorption (Van Vleck 1924c, 359–360; cf. Duncan and Janssen 2007, 595–596, 668). By 1924, Van Vleck thus had the two key physical ingredients of *Umdeutung* paper, the Kramers dispersion formula and the Thomas-Kuhn sum rule. In a very real sense, he had been on the verge of *Umdeutung* (Duncan and Janssen 2007).

Van Vleck apparently told his former student *considerably* more perceptive.”^{34}

*Umdeutung* paper owes to these discussions with Born, there is no doubt that Born already recognized the limitations and the provisional character of the old quantum theory when he turned his lectures on ‘atomic mechanics’^{35} of 1923/1924 into a book. In the preface, dated November 1924, he wrote:

[T]he work is deliberately conceived as an attempt […] to ascertain the limit within which the present principles of atomic and quantum theory are valid and […] to explore the ways by which we may hope to proceed […] [T]o make this program clear in the title, I have called the present book “Vol. I;” the second volume is to contain a closer approximation to the “final” atomic mechanics […] The second volume may, in consequence, remain for many years unwritten. In the meantime let its virtual existence serve to make clear the aim and spirit of this book. (Born 1925, v)

By the time the English translation of

[I]t seems to me that the time is [sic] not yet arrived when the new mechanics can be built up on its own foundations, without any connection with classical theory […] Further, I can state with a certain satisfaction that there is practically nothing in the book which I wish to withdraw. The difficulties are always openly acknowledged […] Lastly, I believe that this book itself has contributed in some small measure to the promotion of the new theories, particularly those parts which have been worked out here in Göttingen.^{36}(Born 1927, xi)

Quantum mechanics continued to develop rapidly in the late 1920s (Duncan and Janssen 2013). Only three years after the English translation of his 1924 book, the sequel Born had promised in the preface to the original German edition appeared. The book, co-authored with his former student *Elementary Quantum Mechanics*: *Lectures on Atomic Mechanics,* Vol. 2. In the preface,

[t]his book is the continuation of the “Lectures on atomic mechanics” published in 1925; it is the “second volume” that was announced in the preface, of which “the virtual existence should serve to make clear the aim and spirit of this book.” The hope that the veil that was still hanging over the real structure of the laws of the atom would soon be parted has been realized in a surprisingly fast and thorough fashion. (Born and Jordan 1930, v)

The authors then warned their readers that they had made a conscious effort to see how much could be done with “elementary, i.e., predominantly algebraic means” (ibid., vi). In other words, elementary quantum mechanics, for Born and Jordan, was essentially matrix mechanics. They relegated wave-theoretical methods to a future book they promised to write “as soon as time and energy permit” (ibid).

In his review of *Elementary Quantum Mechanics* in *Die Naturwissenschaften*, ^{37}

Contrary to Born, Van Vleck only seems to have realized how serious the problems facing the old quantum theory were after its demise. Talking to ^{38} This is not the impression one gets if one looks at the text of the NRC *Bulletin*. It is true that Van Vleck was perfectly candid about the theory’s failures and short-comings. He devoted an entire chapter (chap. VIII) to the problems one ran into as soon as one considered atoms with more than one electron. Van Vleck, however, remained optimistic that these problems could be solved without abandoning the basic conceptual framework of the old quantum theory.

In one of the sections of chap. VIII, sec. 35, entitled “Standard Quantum Conditions and Correspondence Theorem for Frequencies Remain Valid Even if Classical Mechanics Break [sic] Down,” he wrote:

[T]o escape from the difficulties thus encountered [in the preceding section] it appeared necessary to assume that the classical mechanics do [sic] not govern the motions of the electrons in the stationary states of atoms with more than one electron. It might seem that thisbold proposalwould invalidate the considerable degree of success already sometimes attained in complicated atoms […] Such successful applications, however, need not be forfeited if only we assume that the Bohr frequency condition and the standard quantum conditions retain their validity, even though the motions quantized by the latter are not in accord with ordinary dynamics in atoms with more than one electron. (Van Vleck 1926b, 108, our emphasis)

As bold as Van Vleck may have thought his proposal was, by the time his *Bulletin* was in print, *Umdeutung* paper had already made it clear that much more radical measures were called for, even though, as we formulated it in sec. (7.1.5), *Umdeutung* meant that the laws of mechanics were not repealed but reinterpreted. Working on his *Bulletin* in relative isolation in Minnesota, Van Vleck had not been privy to the skepticism with which electron orbits had increasingly been viewed by his European colleagues. Heisenberg and others were prepared to abandon orbits altogether. Van Vleck, by contrast, remained convinced that the old quantum theory was essentially right, and only in error concerning the specific details of the orbits.

By the time he wrote the article about the new quantum theory in the *Chemical Reviews* from which we quoted at the beginning of this paper, Van Vleck had certainly understood that the transition from the old to the new quantum theory required much more radical steps than the ones he had contemplated in his NRC *Bulletin*. As he explained to his colleagues in chemistry,

one cannot use a meter stick to measure the diameter of an atom, or an alarm clock to record when an electron is at the perihelion of its orbit. Consequently we must not be surprised […] that models cannot be constructed with the same kind of mechanics as Henry Ford uses in designing an automobile. (Van Vleck 1928b, 468, quoted and discussed by Duncan and Janssen 2007, 666)

In the years following the *Bulletin*’s publication, Van Vleck’s perceptions of the old quantum theory would change a great deal. Specifically, he would come to see its shortcomings through the lens of his subsequent work on susceptibilities and his own accomplishments in this area as providing powerful arguments against the old and in favor of the new quantum theory.

## 7.4 New Research and the Move to Wisconsin

Only after the *Bulletin* was sent to press was Van Vleck able to confront matrix mechanics. By late March of 1926, he had no doubt caught up with current developments, in part through his own reading and in part through direct contact with Born, who lectured in Madison that month (Fellows 1985, 102). In January of 1926, *Physical Review* (Van Vleck 1971, 7). Van Vleck joined the editorial board and assumed the responsibilities of associate editor (Fellows 1985, 105).^{39} He suddenly had access to the papers of his American colleagues on fellowships overseas before they were published.

In April 1926, Van Vleck read a paper submitted to the *Physical Review* by ^{40} New experimental evidence indicated that the rotation of polar molecules like HCl ought to be quantized with half quanta rather than, as ^{41} The results of both calculations can be found in the table in fig. (3.2). They deviated sharply from the classical value of 1/3 for the constant
in the

About a month after Van Vleck read Pauling’s paper, a paper by *Physical Review*. As Van Vleck recalled decades later:

I remember in particular [Tate] showing me an article by Dennison written in Copenhagen [while on an International Education Board (IEB) fellowship] which had the matrix elements for the symmetrical top. I realized this was just what was needed to compute the dielectric constant of a simple diatomic molecule. I requested Dennison’s permission to use them in advance of their appearing in print, and remember his wiring me permission to do so. I found that they made the factor in theDebye formula […] for the susceptibility reacquire the classical value , replacing the nonsensical values yielded by the old quantum theory. ^{42}(Van Vleck 1971, 8)

Van Vleck’s calculation was analogous to *Nature* to secure priority, and in June set off for Europe, where his parents were vacationing. The summer would bring disappointment, though. In July he received a letter from the editors of *Nature*, who were “rather wary of publications by comparatively unknown authors” (Van Vleck 1968, 1235) and requested a significant reduction in the length of his note (Fellows 1985, 109). Van Vleck complied but the delay cost him his priority in publishing the result. He still vividly remembered his disappointment in 1963:

I must confess that that rather burned me up because I felt it was quite a significant achievement in quantum theory. When I mentioned it toBohr he said “you should have got me to endorse it, it would have gone through quicker” [see also Van Vleck (1968, 1235)]. As it was, I think [Lucy] Mensing and Pauli beat me to it on being the first to publish that factor one-third. It was essentially a triple tie, though [Ralph de Laer] Kronig had it too, all three of us. ^{43}^{,}^{44}

Van Vleck (1971) later called it a “quadruple tie” (7), adding a paper by ^{45} Still, the papers by Mensing and Pauli (1926), *Nature* of 14 August.^{46} However, as Pauli (1933) would concede in his review of Van Vleck’s 1932 book, it would fall to Van Vleck (1927a; 1932b) to show in full generality that the new quantum mechanics restored the value
for the factor
. These 1926 papers only dealt with the special case in which the rigid rotator was used to model the gas molecules.^{47}

While crossing the Atlantic in June 1926, Van Vleck finished another calculation in quantum mechanics only to discover upon reaching Copenhagen that he had been scooped by

When Van Vleck returned to the United States, he found that quantum theorists were in high demand and that the publication of his NRC *Bulletin* had earned him a reputation as one of the few in the United States who had a grasp of the theory. He had also found time that summer to write a short report on the new quantum mechanics for the Progress Committee of the Optical Society of America (Van Vleck 1928c). Leonard R. Ingersoll at the University of Wisconsin called it “the only readable synopsis of the present situation in this difficult subject” (Fellows 1985, 162).

As Van Vleck’s fame increased, he found himself wooed more and more doggedly by other universities. From the fall of 1926 through the spring of 1928, he declined offers from the University of Chicago, Princeton, and the Mellon Institute. Many of these he rejected out of a sense of loyalty to the University of Minnesota, which had been so generous to him. The department continued to recognize Van Vleck’s value, following up with raises and promotions. In June 1926 he had become an associate professor, and only a year later he became a full professor. By the summer of 1927, having married Abigail June Pearson, a native Minnesotan, he had established family ties to the state as well. It took an offer from his *alma mater* to win him over, and even then he vacillated for over a year before accepting a position at the University of Wisconsin (Fellows 1985, 169–175). He arrived at Madison in time for the fall semester of 1928.

Over the same period, Van Vleck had been busy pursuing the line of inquiry that would secure him fame as an expert in magnetism. He published a three-part paper that advanced a general theory of susceptibilities (Van Vleck 1927a; 1927b; 1928a). This trilogy would form the basis for *The Theory of Electric and Magnetic Susceptibilities* (Van Vleck 1932b).

Fig. 7.3: Van Vleck receiving the National Medal of Science in 1966 from President Lyndon B. Johnson with Lady Bird Johnson looking on (picture courtesy of John Comstock).

Before turning to that volume in the next section, we wrap up this section with some brief comments about Van Vleck’s career after he left the Midwest. In early 1934, Van Vleck was offered an associate professorship at Harvard to replace

During World War II, Van Vleck was the head of the theory group at Harvard’s Radio Research Laboratory, thinking about ways to jam enemy radar, and a consultant to MIT’s much bigger Radiation Laboratory (Anderson 1987, 514).
From 1945 to 1949 he was chair of Harvard’s physics department (ibid., 519). In 1951, he succeeded

Even though Van Vleck spent the better part of his career at Harvard, he always retained a soft spot for Minnesota and Wisconsin. Together with *magnum opus*” (Roger Stuewer, private communication), appeared in slightly different versions in the alumni magazines of both universities (Lin et.al. 1977; 1980). As an undergraduate, Van Vleck had been in the Wisconsin band, probably playing the flute (Anderson 1987, 503). As a young boy, he had attended the game in Madison in November 1909 that saw the premiere of “On Wisconsin.” Unfortunately for young Van Vleck, the Badgers lost that game to the visiting Gophers (Lin et.al. 1977, 4). When many decades later he won the Nobel Prize, Stuewer sent him a one-word telegram: “SKI-U-MAH.” This is a Minnesota football cheer, which supposedly, as Stuewer had explained to Van Vleck earlier, is an old Native American war cry meaning “victory.” Van Vleck wrote back that of all the congratulatory messages he had received this one was “the briefest and most to the point.”^{48}

## 7.5 The Theory of Electric and Magnetic Susceptibilities

#### 7.5.1 Writing the 1932 Book

In 1928 Van Vleck had been thinking about writing his own book on quantum mechanics, but he became interested that fall when *Bulletin* still fresh in his mind, warned Fowler of the “adiabatic speed” at which he wrote.^{49} The caveat was well warranted. It would take Van Vleck over three years to complete *The Theory of Electric and Magnetic Susceptibilities*.

The delays were of a different nature than the trials and tribulations that had prevented a slightly younger Van Vleck from publishing his completed “article” in the NRC *Bulletin*. This time, he made his own original research a higher priority. He also accepted several invitations to give talks in Iowa, Minneapolis, and New York. This, and supervising the research of his graduate students and postdocs, took up most of his time during the 1928–29 school-year. He did manage to squeeze in one chapter, however. “I have actually, mirab[i]le dictu, completed one chapter of my book,” he wrote to

After spending the summer on research, he devoted all of his free time in the fall to the book and completed another chapter. The following spring, 1930, he negotiated a sabbatical leave in which he received half of his salary from Wisconsin, and made up the rest with a Guggenheim fellowship. He and Abigail went to Europe, making stops in England, Holland, and Germany. Finally, Van Vleck went to Switzerland while Abigail joined his parents for a tour of Italy. Unfortunately, when Van Vleck arrived at the *Eidgenössische Technische Hochschule* (ETH) in Zurich, he discovered that Pauli and other faculty were away on lengthy spring vacations (ibid, 240–241). Van Vleck turned this to his advantage:

The janitor at the ETH, fortunately, was very friendly and arranged for me to have the use of the library. I lived comfortably at the Hotel Waldhaus Dolder, and with a portable typewriter and no distractions by colloquia, social life or sight-seeing, I probably wrote more pages of my ‘Theory of Electric and Magnetic Susceptibilities’ in my first month at Zurich than in any other comparable time interval. (Van Vleck 1968, 1236, quoted by Fellows 1985, 242)

When

In June 1930, Van Vleck received an invitation to the

After receiving permission from Wisconsin, he extended his trip into the fall, finally returning in October with the book almost complete.

Reviewers immediately recognized its importance.^{50} Even *Elementary Quantum Mechanics* we quoted in sec. (7.3.2), had nothing but praise for the volume that he had originally dismissed as a rehash of old papers. This is all the more remarkable given that Van Vleck sharply criticized Pauli’s (1921) own early contribution to the subject. Pauli (1933) called Van Vleck’s book “a careful and complete overview of the entire field […] of the dielectric constant and the magnetic susceptibility” (see also the quotations in note 8). He recognized that many of the results reported in the book had first been found by Van Vleck himself, such as “the general proof for the occurrence of the numerical factor
in the *Bulletin* (recall

#### 7.5.2 The 1932 Book and Spectroscopic Stability

Van Vleck’s *The Theory of Electric and Magnetic Susceptibilities* is remarkable both for the wide range of concepts it covers and techniques it assembles, and for the amount of discussion devoted to the historical development of the theories under consideration. Even though the main focus of the book is on gases, it ended up, as we mentioned in the introduction, setting “a standard and a style for American solid-state physics” (Anderson 1987, 524). As Van Vleck explained in the preface:

At the outset I intended to include only gaseous media, but the number of paramagnetic gases is so very limited that any treatment of magnetism not applicable to solids would be rather unfruitful. (Van Vleck 1932b, vii)

In the book, Van Vleck clearly demonstrated how his general

The book can be roughly divided into two parts, separated by an interstitial aside concerning the defects and demise of the old quantum theory. Chaps. I–IV constitute the first part. Here Van Vleck surveyed the classical theories of electric and magnetic susceptibilities. In addition to marshaling resources that will be drawn from in later chapters, Van Vleck carefully examined the failings of the classical theories, motivating the quantum-mechanical approach that is developed in the book’s second half.
Chap. V is the interstitial aside, which we will discuss in more detail in sec. (7.5.4). Chap. VI begins the book’s second half, which develops a quantum-theoretical approach to electric and magnetic susceptibilities. Like chap. XI of the NRC *Bulletin* on mathematical techniques, this chapter on “Quantum-Mechanical Foundations,” is by far the longest of the book. It takes up 59 pages (chap. XI of the *Bulletin* ran to 50 pages). It is so complete that, as we mentioned in sec. (7.1.4), it was sometimes used by itself as an introductory text in courses on the new theory. Although Van Vleck’s work had largely been in the tradition of matrix mechanics, his general exposition of quantum mechanics, in his book as well as in his lectures (as evidenced by the lecture notes mentioned in note 7), has none of the “Göttingen parochialism” (Duncan and Janssen 2008, 641) of *Elementary Quantum Mechanics*. As Van Vleck wrote about Chapter VI in the preface:

I have tried to correlate and intermingle the use of wave functions and of matrices, rather than relying exclusively on the one or the other, as is too often done. It is hoped that this chapter may be helpful as a presentation of the perturbation machinery of quantum mechanics, quite irrespective of the magnetic applications.^{51}(Van Vleck 1932b, viii)

Chaps. VII–XII interrogate and extend Van Vleck’s general

The book does exactly what a good textbook ought to do according to ^{52} It not only set much of the agenda for the research program envisioned by its author, it did so in the form of a pedagogically carefully constructed text, in which all the relevant theoretical and experimental literature is reviewed and all the required mathematical techniques are introduced, along with their canonical applications, all with the aim, ultimately, of preparing its readers to become active contributors to this research program themselves.

The book reflects Van Vleck’s own trajectory, from his early work in the old quantum theory to the line of work in the new quantum theory that won him his reputation as one of the pioneering theorists of solid-state physics in the United States (cf. the remark by

7.7 |

where
is the number of molecules,
is a constant,
is the permanent electric moment of the molecule under consideration,
is ^{53} The first term comes from the induced moment of the molecule, resulting from the deformation of the molecule by the external electric field. The second term comes from the alignment of the permanent moment of the molecule with the field. Thermal motion will frustrate this alignment, which is expressed in the inverse proportionality to the temperature
. As Van Vleck noted when he introduced the formula in his book:

The idea of induced polarization is an old one […] The suggestion that part of the electric susceptibility might be due to alinement [sic] of permanent moments, resisted by temperature agitation, does not appear to have been made until 1912 byDebye [1912]. A magnetic susceptibility due entirely to the orientation of permanent moments was suggested some time previously, in 1905, by [Paul] Langevin [1905a, 1905b], and the second term of [eq. 7.7] is thus an adaptation to the electric case of Langevin’s magnetic formula. (In the electric case, a formula such as [7.7] is commonly called just the Debye formula, but we use the compound title Langevin-Debye in order to emphasize that the mathematical methods which we use to derive the second term of [eq. 7.7] apply equally well to magnetic or electric dipoles). (Van Vleck 1932b, 30)

It is this temperature-dependent second term that Van Vleck was most interested in. We can write this term as

7.8 |

Both classical theory and quantum mechanics correctly predict that, under very general conditions, . The two theories agree except at very low temperatures, where the classical theory breaks down and where quantum mechanics gives deviations from (Van Vleck 1932b, 185, 197). Other than that, the factor is a remarkably robust prediction of both theories. It is true for a wide range of models (e.g., dumbbell, symmetrical top) and it is independent of the choice of a -axis for the quantization of the -component of the angular momentum in these models. The latter feature is an example of what Van Vleck called “spectroscopic stability.” As he put it in Part I of the trilogy that provided the backbone for his 1932 book:

[T]he high spectroscopic stability characteristic of the new quantum mechanics is the cardinal principle underlying the continued validity of theLangevin-Debye formula. We shall not attempt a precise definition of the term “spectroscopic stability.” ^{54}It means roughly that the effect of orientation or of degeneracy in general is no greater than in the classical theory, and this usually implies that summing over a discrete succession of quantum-allowed orientations gives the same result as a classical average over a continuous distribution.^{55}(Van Vleck 1927a, 740)

The old quantum theory gave values for
much greater than
, as ^{56} quantization relative to the applied field as with random orientations” (ibid., 227; see Fellows 1985, 144). Van Vleck managed to salvage a plausibility argument for this claim when he had to shorten his note for *Nature* (see sec. 7.5.4). In subsequent publications, he gave the full proof, not just for the rigid rotator but for a broad class of models (Van Vleck 1927a; 1932b).

That the susceptibility of a gas of rigid rotators does not depend on the axis of quantization is an example of spectroscopic stability. In his book, Van Vleck devoted considerable space to the “principle” or the “theorem” of spectroscopic stability (Van Vleck 1932b, 111, 139). Before giving a mathematical proof (ibid., sec. 35, 137–143), he explained the situation qualitatively in the chapter on the old quantum theory (ibid., sec. 30, 111–113). After conceding that the term, which he took from ^{57} he wrote:

[I]t can for our purposes be considered identical with the idea that the susceptibility is invariant of the type of quantization, or in the special case of spacial quantization, that summing over the various quantized orientations is equivalent, as far as results are concerned, to a classical integration over a random orientation of orbit. It is indeed remarkable that a discrete quantum summation gives exactly the same answers as a continuous integration. This was not at all true in the old quantum theory. (Van Vleck 1932b, 111)

In the three subsections that follow, we present derivations of the formula for the electric susceptibility in gases in classical theory (sec. 7.5.3), the old quantum theory (sec. 7.5.4), and quantum mechanics (sec. 7.5.5). In the quantum theory, old and new, we focus on the special case in which the gas molecules are modeled as rigid rotators. We will see how the robustness of the value
was established, lost, and regained. In secs. (7.5.3) and (7.5.5), we follow Van Vleck (1932b). In sec. (7.5.4), we follow

#### 7.5.3 Susceptibilities in Classical Theory

The susceptibility of a gas, , is a measure of how the gas responds to external fields. We will consider the electric susceptibility in particular. The field, , and polarization, , are assumed to be parallel, and the medium is assumed to be both isotropic and homogenous. Predictions of require one to deal with the motions of the systems used as models for the gas molecules and their constituent atoms: the specific behavior of these systems in response to the external field will determine their electric moments, and in turn, the polarization of the medium.

Consider a small volume of a gas of molecules with permanent dipole moments, such as HCl. When an electric field is applied, say in the
-direction of the coordinate system we are using, the molecules experience a torque that tends to align them with the field. In addition, the charges in each molecule will rearrange themselves in response. If the field is too weak to cause ionization, the charges will settle into equilibrium with the field, creating a temporary induced electric moment. Both of these effects contribute to a molecule’s electric moment
. Following Van Vleck, we largely focus on the first of these effects, which, as mentioned above, is responsible for the temperature-dependent term in the

To find the polarization,
, we need to take two averages over the component of these electric moments in the direction of the field
, in this case the
component. First, we need to average
over the period(s) of the motion of the molecule (or in the case of quantum theory, over the stationary state). This is indicated by a single overbar:
. Second, we need to average this time-average
over a thermal ensemble of a large number
of such molecules. This is indicated by a double overbar:
. All derivations of expressions for the susceptibility call for this two-step averaging procedure.^{58}

The strength of the polarization is given by:

7.9 |

The electric susceptibility, , is defined as the ratio of the strengths of the polarization and the external field:

7.10 |

When it comes to the derivation of expressions for , the various theories differ only in how and are obtained.

We first go through the calculation in the classical theory, covered elegantly in chap. II of Van Vleck’s book, “Classical Theory of the Langevin-Debye Formula” (Van Vleck 1932b, 27–41). Consider a multiply-periodic system with degrees of freedom, which, in its unperturbed state, is described by the Hamiltonian , and which is subjected to a small perturbation coming from an external electric field in the -direction. The Hamiltonian for the perturbed system can then be written as the sum , where . In this case, the full Hamiltonian is given by:

7.11 |

As in his NRC *Bulletin*, Van Vleck (1932b, 38) used action-angle variables
) for the *unperturbed* Hamiltonian
, even when dealing with the full Hamiltonian (see also Van Vleck 1927b, 50; cf. our discussion in sec. 7.3.2).

The
-component of the polarization of the system,
, can be written as a Fourier expansion. For a system with only one degree of freedom the expansion is given by:^{59}

7.12 |

Essentially the same Fourier expansion is the starting point both for the derivation of the *Umdeutung* paper (Duncan and Janssen 2007, 592–594).^{60}

To ensure that
in eq. (7.12) is real, the complex amplitudes
must satisfy
. Eq. (7.12) also gives the expansion for a system with
degrees of freedom, if, following Van Vleck, we introduce the abbreviations
,
,
, and
(Van Vleck 1932b, 38). Through
, the full Hamiltonian,
, in eq. (7.11) depends on
, so the action-angle variables
are *not* action-angle variables for
. The phase space element, however, is invariant under the transformation from action-angle variables for
to action-angle variables for
, i.e.,
(ibid., 39).

Using the standard formula for the canonical ensemble average, we find for
(ibid., 38):^{61}

7.13 |

To first order in the field , the Boltzmann factor is given by:

7.14 |

Assuming there is no residual polarization in the absence of an external field (which is true for gases if not always for solids), i.e., for , we have

7.15 |

7.16 |

For we insert its Fourier expansion

7.17 |

Only the terms on the right-hand side will contribute to the integral of over in eq. (7.16). All terms are periodic functions of , which vanish when integrated over a full period of these functions. Hence,

7.18 |

In other words, is the time average of . It follows from eq. (7.18) that the integrals over in numerator and denominator of eq. (7.16) cancel. Eq. (7.16) thus reduces to (ibid., 39–40):

7.19 |

where in the last step we used that

7.20 |

This relation holds both in the classical theory and in quantum mechanics. That it does not hold in the old quantum theory is central, as we will see, to that theory’s failure to reproduce the

denotes the statistical mean square of in the absence of the field , i.e. the average over only the part of the phase space, weighted according to the Boltzmann factor, of the time average value of [in our notation: ] for a molecule having given values of the ’s [recall that short-hand for ]. Now if the applied electric field is the only external field, all spacial orientations will be equally probable when , and the mean squares of the , , and components of moment will be equal [i.e., ]. This will also be true even when there are other external fields (e.g. a magnetic field) besides the given electric field[,] provided, as is usually the case, these other fields do not greatly affect the spacial distribution. We may hence replace by one-third the statistical mean square of the vector momentum of the molecule. (Van Vleck 1932b, 39–40)

In the old quantum theory, as pointed out by

Van Vleck (1932b) called eq. (7.19) “a sort of generalized Langevin-Debye formula” (40). No particular atomic model need be assumed for its derivation. To obtain the familiar Langevin-Debye formula (7.7) with terms corresponding to permanent and induced electric moments, we need to adopt a model for the molecule of the gas similar to that underlying the classical dispersion theory of ^{62} Let
be the number of degrees of freedom with which these bound charges can vibrate, then with a set of normal coordinates
, we can write the component of the electric moment
along the principal axis of inertia, labeled
, as a linear function of these normal coordinates (ibid., 33):

7.21 |

where is the -component of the permanent electric dipole moment of the molecule, and where the coefficients are real positive numbers. Similar expressions obtain for the - and -components of .

Since positive and negative displacements will cancel during the averaging process,
for
(ibid., 40). If we associate a ‘spring constant’
with the linear force binding the *i*-th charge, then, by the equipartition theorem, we get:
. Inserting eq. (7.21) for
and similar equations for
and
for the components of
in eq. (7.19) and using the relations for
and
, we find (ibid., 37):

7.22 |

As desired, the first term gives us the contribution of the permanent moment with a factor of , and the second is of the form , where is independent of temperature.

Unfortunately, the assumption that electrons can be thought of as harmonically-bound charges in the atom had to be discarded as the old quantum theory began to shed light on atomic structure. This is the same development that was responsible for the old quantum theory’s

A model such as we have used, in which the electronic motions are represented by harmonic oscillators, is not compatible with modern knowledge of atomic structure […] Inasmuch as we have deduced a generalizedLangevin-Debye formula for any multiply periodic system, the question naturally arises whether [eq. 7.19] cannot be specialized in a fashion appropriate to a real Rutherford atom instead of to a fictitious system of oscillators mounted on a rigid rotating framework. This, however, is not possible. (Van Vleck 1932b, 41)

The reason Van Vleck gave for this is that, in the Rutherford(-Bohr) atom, the energy of the electron ranges from
to
causing the

#### 7.5.4 Susceptibilities in the Old Quantum Theory

Attempts to derive a formula for susceptibility in the old quantum theory, similar to the one in classical theory given above, ran afoul of some of the old quantum theory’s most striking yet little-known inconsistencies. The old quantum theory was at its best when physicists could be agnostic about the details of the multiply-periodic motion in atoms or molecules (as in the case of the

the old quantum theory replaced the factor [in theLangevin-Debye formula 7.7] by a constant whose numerical value depended rather chaotically on the type of model employed, whether whole or half quanta were used, whether there was “weak” or “strong” spacial quantization, etc. ^{63}This replacement of by caused an unreasonable discrepancy with the classical theory at high temperatures, and in some instances the constant even had the wrong sign. (Van Vleck 1927a, 728)

The issue of ‘weak’ or ‘strong’ quantization mentioned in this passage has to do with the question of how to quantize the *unperturbed* motion in the old quantum theory. Consider a rotating molecule. If a strong enough electric field is present, it makes sense to quantize the molecule’s rotation with respect to the direction of the field. But how to quantize in the absence of an external field? In that case, there is no reason to assume a preferred direction in space, and it seems arbitrary to preclude entire classes of rotational states.
Yet one had to proceed somehow. Two different kinds of quantization could be assumed (Van Vleck 1932b, 106). In the first, called ‘strong spatial quantization,’ rotation was assumed to be quantized with respect to the field *even when there was, as yet, no field*. In the other, called ‘weak spatial quantization,’ molecules were assumed to be in some intermediate state between ‘strong quantization’ and a classical distribution of rotational states.^{64} Van Vleck highlighted this conceptual conundrum:

Spacial quantization cannot be effective unless it has some axis of reference. In the calculation ofPauli and Pauling […] the direction of the electric field is taken as such an axis […] [I]n the absence of all external fields […] there is no reason for choosing one direction in space rather than another for the axis of spacial quantization. (Van Vleck 1932b, 108)

We need to take a closer look at these calculations by

7.23 |

where
is the molecule’s moment of inertia (Pauli 1921, 321).^{65}

Implicitly assuming strong spatial quantization,

7.24 |

^{66}

7.25 |

Both

7.26 |

The equations on the blackboard behind Van Vleck in the picture in fig. (3.1) may serve as a reminder that even this sanitized version (7.26) of the quantum conditions (7.24–7.25) is *not* how angular momentum is quantized in modern quantum mechanics.^{67} This modern treatment of angular momentum underlies the calculations of susceptibilities by

To find the susceptibility of a gas of rigid rotators in the old quantum theory,

7.27 |

where
is the period of rotation. Substituting the classical equation
into the Hamiltonian in eq. (7.23) and using eq. (7.24) to set
,

7.28 |

where
, the value of
, is the total energy of the molecule (Pauli 1921, 322; Pauling 1926b, 570). Using eq. (7.28),

In the evaluation of
, a distinction needs to be made between two energy regimes (Pauli 1921, 322). In the first, the molecules have energies
much smaller than
, the energy of the interaction between the electric moment and the field. In the second,
is much larger than
. The calculations of

7.29 |

The ratio
on the right-hand side corresponds to the *time* average
for the *unperturbed* system. In the *classical* theory,^{68}
but *not* in the old quantum theory, the *ensemble* average,
, of this time average,
(both for the *unperturbed* system) is equal to
.
This is the same point that Van Vleck (1932b, 39–40) made in one of the passages we quoted in sec. (7.5.3):
(see eq. 7.20). It thus follows from the classical counterpart of eq. (7.29) (see note 68) that the ensemble average,
, of the time average,
(now both for the *perturbed* system) vanishes.

According to the classical theory, in other words, there is no contribution to the susceptibility *at all* from molecules in the energy regime
for which the classical counterpart of eq. (7.29) (see note 68) was derived. As *only such orbits present that according to the classical theory do not give a sizable contribution to the electrical polarization*” (Pauli 1921, 325; emphasis in the original).

*not* vanish in the old quantum theory (where both averages are for the perturbed system). Hence, he concluded, in the old quantum theory the susceptibility does not come from molecules in the low energy states but from those in the high energy states of the
regime in which eq. (7.29) holds. It therefore should not surprise us, Pauli argued, that the old quantum theory does not reproduce the factor
of the

Before calculating
, ^{69}

7.30 |

This energy, in turn, can be expressed in terms of a new quantity (Pauli 1921, 326):

7.31 |

where is a “temperature characteristic for the quantum drop in specific heat associated with the rotational degree of freedom” (ibid.). Combining eqs. (7.30) and (7.31), we see that

7.32 |

7.33 |

The ensemble average of is given by (Pauli 1921, 325):

7.34 |

where we used that, in the regime, can be replaced by in the Boltzmann factors. Inserting eq. (7.33) for and using eq. (7.32) for , we arrive at:

7.35 |

(Pauli 1921, 326; Pauling 1926b, 571). Evaluating these sums for integer and half-integer quantum numbers, respectively, and multiplying by
, both

As we mentioned in sec. (7.4), *Dreimännerarbeit* (Born et.al. 1926, chap. 4, sec. 1) as her point of departure.^{70} Instead of the ad hoc quantization conditions in eqs. (7.24–7.25) that Pauli and *Nature* (see sec. 7.4), citing both Mensing (1926) and

The new theory replaced eqs. (7.24–7.25) for the quantization of the rigid rotator’s angular momentum from the old quantum theory with relations familiar to the modern reader:^{71}

7.36 |

where
and
(see, e.g., Mensing 1926, 814). Eq. (7.30) for the molecule’s rotational energy
in the absence of a field accordingly changes to (Mensing and Pauli 1926, 510):^{72}

7.37 |

Hence, up to an additive constant, the energy is given by squares of half-integers rather than integers, as