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Chapter 4
Complex Second-degree Problems

The preceding chapter set out the methods used by the Babylonians for the solu-
tion of the fundamental second-degree problems—cut-and-paste, quadratic com-
pletion, change of scale. However, as inherent in the term “fundamental,” the
Babylonians also worked on problems of a more complex nature. Such problems
are in focus in the present chapter, which first takes up the third section of the text
of which we have just examined the two introductory pedagogical sections.

TMS IX #3

19. Surface, length, and width I have heaped, 1 the surface. 3 lengths, 4 widths
heaped,

20. its 17th to the width joined, 30′.
21. You, 30′ to 17 go: 8°30′ you see.
22. To 17 widths 4 widths join, 21 you see.
23. 21 as much as of widths posit. 3, of three lengths,
24. 3, as much as of lengths posit. 8°30′, what is its name?
25. 3 lengths and 21 widths heaped.
26. 8°30′ you see,
27. 3 lengths and 21 widths heaped.
28. Since 1 to the length is joined and 1 to the width is joined, make hold:
29. 1 to the heap of surface, length, and width join, 2 you see,
30. 2 the surface. Since the length and the width of 2 the surface,
31. 1°30′, the length, together with 1°20′, the width, are made hold,
32. 1 the joined of the length and 1 the joined of the width,
33. make hold, ¿1 you see.? 1 and 1, the various (things), heap, 2 you see.
34. 3…, 21…, and 8°30′ heap, 32°30′ you see;
35. so you ask.
36. … of widths, to 21, that heap:
37. … to 3, lengths, raise,
38. 1‵3 you see. 1‵3 to 2, the surface, raise:
39. 2‵6 you see, ¿2‵6 the surface?. 32°30′ the heap break, 16°15′ you ⟨see⟩.
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40. {…}. 16°15′ the counterpart posit, make hold,
41. 4‵24°3′45″ you see. 2‵6 ¿erasure?
42. from 4‵24°3′45″ tear out, 2‵18°3′45″ you see.
43. What is equal? 11°45′ is equal, 11°45′ to 16°15′ join,
44. 28 you see. From the 2nd tear out, 4°30′ you see.
45. igi 3, of the lengths, detach, 20′ you see. 20′ to 4°30′
46. {…} raise: 1°30′ you see,
47. 1°30′ the length of 2 the surface. What to 21, the widths, may I posit
48. which 28 gives me? 1°20′ posit, 1°20′ the width
49. of 2 the surface. Turn back. 1 from 1°30′ tear out,
50. 30′ you see. 1 from 1°20′ tear out,
51. 20′ you see.

Lines 19 and 20 present a system of two equations about a rectangle, one
of the first and one of the second degree. The former is of the same type as the
one explained in TMS XVI #1 (see page 27). The second coincides with the one
that was examined in section #2 of the present text (see page 54). In symbolic
translation, the equation system can be written

1
17 (3ℓ + 4𝑤) + 𝑤 = 30′ , ⊏⊐(ℓ, 𝑤) + ℓ + 𝑤 = 1.

In agreement with what we have seen elsewhere, the text multiplies the first-
degree equation by 17 (using the Akkadian verb “to go,” see page 19), thus ob-
taining integer coefficients (as much as):

3ℓ + (4 + 17)𝑤 = 3ℓ + 21𝑤 = 17 ⋅ 30′ = 8°30′.

This is done in the lines 21–25, while the lines 26 and 27 summarize the result.
Lines 28–30 repeat the trick used in section #2 of the text (see Figure 3.10):

the length and the width are prolonged by 1, and the square that is produced when
that which the two “joined”1 “hold” is “joined” to the “heap” ⊏⊐(ℓ, 𝑤) + ℓ + 𝑤;
out of this comes a “surface 2,” the meaning of which is again explained in lines
30–33.

The lines 34–37 are very damaged, too damaged to be safely reconstructed
as far as their words are concerned. However, the numbers suffice to see how the
calculations proceed. Let us introduce the magnitudes 𝜆 = ℓ + 1 and 𝜙 = 𝑤 + 1.
The text refers to them as the length and width “of the surface 2”—in other words,
⊏⊐(𝜆, 𝜙) = 2. Further,

1As the “to-be-joined” of page 37, this noun (wuṣubbûm) is derived from the verb “to join.”
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3𝜆 + 21𝜙 = 3 ⋅ (ℓ + 1) + 21 ⋅ (𝑤 + 1)
= 3 + 21 + 3ℓ + 21𝑤
= 3 + 21 + 8°30′

= 32°30′.
In order to facilitate the understanding of what now follows we may further

introduce the variables

𝐿 = 3𝜆 , 𝑊 = 21𝜙

(but wemust remember that the text has no particular names for these—in contrast
to 𝜆 and 𝜙 which do have names; we now speak about, not 𝑤𝑖𝑡ℎ the Babylonian
author). Lines 36–39 find that

⊏⊐(𝐿, 𝑊 ) = (21 ⋅ 3) ⋅ 2 = 1‵3°2′ = 2‵6°;

summing up we thus have

𝐿 + 𝑊 = 32°30′ , ⊏⊐(𝐿, 𝑊 ) = 2‵6°.

We have now come to line 39, and arrived at a problem type which we had not
seen so far: A rectangle for which we know the area and the sum of the two sides.

Once again, a cut-and-paste method is appealed to (see Figure 4.1). As be-
fore, the known segment is “broken” together with the rectangle which goes with
it. In the present situation, this segment is the sum of 𝐿 and 𝑊 . This rectangle is
composed from ⊏⊐(𝐿, 𝑊 ), traced in full, and a square □(𝐿) to its right, drawn
with a dotted line. Next, we let the two “moieties” of this segment “hold” a square
(lines 39–40). As we see, that part of the original rectangle⊏⊐(𝐿, 𝑊 )which falls
outside the new square can just be fitted into it so as to form a gnomon together
with that part which stays in place. In its original position, this piece appears in
light shading, whereas it is darkly shaded in its new position.

One part of the new square □(16°15′) is constituted by the gnomon, whose
area results from recombination of the original rectangle ⊏⊐(𝐿, 𝑊 ); this area
is hence 2‵6. We also know the area of the outer square, 16°15′ × 16°15 =
4‵24°3′45″ (lines 40 and 41). When the gnomon is “torn out” (lines 41 and 42),
2‵18°3′45″ remains for the square contained by the gnomon. Its side (that which
“is equal”) is 11°45′, which must now be “joined” to one of the pieces 16°15′
(which gives us 𝑊 ) and “torn out” from the other, its “counterpart” (which gives
us 𝐿). This time, however, it is not the same piece that is “joined” and “torn out”;
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Figure 4.1: The cut-and-paste method of TMS IX #3.

there is hence no reason to “tear out” before “joining,” as in YBC 6967 (page
46), and the normal priority of addition can prevail. Lines 43–44 find 𝑊 = 28
and 𝐿 = 4°30′. Finally, the text determines first 𝜆 and 𝜙 and then ℓ and 𝑤—we
remember that 𝐿 = 3𝜆, 𝜆 = ℓ + 1, 𝑊 = 21𝜙, 𝜙 = 𝑤 + 1. Since 28 has no igi,
line 48 explains that 21 ⋅ 1°20′ = 28.

AO 8862 #2

I

30. Length, width. Length and width
31. I have made hold: A surface I have built.
32. I turned around (it). The half of the length
33. and the third of the width
34. to the inside of my surface
35. I have joined: 15.
36. I turned back. Length and width
37. I have heaped: 7.

II

1. Length and width what?
2. You, by your proceeding,
3. 2 (as) inscription of the half
4. and 3 (as) inscription
5. of the third you inscribe:
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6. igi 2, 30′, you detach:
7. 30′ steps of 7, 3°30′; to 7,
8. the things heaped, length and width,
9. I bring:
10. 3°30′ from 15, my things heaped,
11. cut off:
12. 11°30′ the remainder.
13. Do not go beyond. 2 and 3 make hold:
14. 3 steps of 2, 6.
15. igi 6, 10′ it gives you.
16. 10′ from 7, your things heaped,
17. length and width, I tear out:
18. 6°50′ the remainder.
19. Its moiety, that of 6°50′, I break:
20. 3°25′ it gives you.
21. 3°25′ until twice
22. you inscribe; 3°25′ steps of 3°25′,
23. 11°40′25″; from the inside
24. 11°30′ I tear out:
25. 10′25″ the remainder. ⟨By 10′25″, 25′ is equal⟩.
26. To the first 3°25′
27. 25′ you join: 3°50′,
28. and (that) which from the things heaped of
29. length and width I have torn out
30. to 3°50′ you join:
31. 4 the length. From the second 3°25′
32. 25′ I tear out: 3 the width.
32a. 7 the things heaped.
32b. 4, the length; 3, the width; 12, the surface.

The first two words of the first line (I.30) tell us that we are dealing with a
figure that is fully characterized by its length and its width, that is, with a rectangle
(cf. page 28)—or rather with a rectangular field: references to surveyors’ practice
can be found in the text (for instance, I turned around it in line I.32 probablymeans
that the surveyor, after having laid out a field, has walked around it; in I.36 he
turned back).

Before studying the procedure, we may concentrate on certain aspects of the
formulation of the text. In line I.31 we see that the operation “to make hold” does
not immediately produce a numerical result—since the measures of the sides are
still unknown, that would indeed be difficult. The text only says that a “surface”
has been “built”; we are probably meant to understand that it has been laid out
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in the terrain. Later, when two known segments are to “hold” (lines II. 13–14,
and perhaps II.21–22), the numerical determination of the area appears as a dis-
tinct operation, described with the words of the table of multiplication. Finally,
we observe that the text defines the outcome of a “heaping” addition as a plural,
translated “the things heaped,” and that the normal alternating pattern of gram-
matical person is not respected.

The text, almost certainly from Larsa, seems to be from c. 1750 bce and
thus to belong to the early phase of the adoption of algebra by the southern scribe
school (see page 109). These particularities may therefore give us information
about the ideas on which it was based—such ideas were to become less visible
once the language and format became standardized.

The topic of the problem is thus a rectangle. Lines I.36–37 tell us that the
“heap” of its length and width is 7, while the lines I.32–35 state that “joining”
half of the length and one third of the width to the “surface” produces 15:2

⊏⊐(ℓ, 𝑤) + 1
2 ℓ + 1

3 𝑤 = 15 , ℓ + 𝑤 = 7.

The upper part of Figure 4.2 illustrates this situation, with 2 and 3 “inscribed as
inscription” of 1

2 respectively
1
3 of the “projections”

3 1 of the length and the width
(lines II.2–5); the heavily drawn configuration thus has an area equal to 15.

The solution could have followed the pattern of TMS IX #3 (page 57). By
introducing an “extended length” 𝜆 = ℓ + 1

3 and an “extended width” 𝜙 = 𝑤 + 1
2 ,

and adding (according to the “Akkadian method”) the rectangle ⊏⊐( 1
2 , 1

3 ) which
is lacking in the corner where 2 and 3 are “inscribed,” we would have reduced
the problem to

⊏⊐(𝜆, 𝜙) = 15+ ⊏⊐( 1
2 , 1

3 ) = 15°10′, 𝜆 + 𝜙 = 7 + 1
2 + 1

3 = 7°50′.

2We should observe that the half that appears here is treated as any other fraction, on an equal footing
with the subsequent third. It is not a “moiety,” and the text finds it through multiplication by 30′, not
by “breaking.”
Let us also take note that the half of the length and the third of thewidth are “joined” to the “surface,”

not “heaped” together with it. A few other early texts share this characteristic. It seems that the
surveyors thought in terms of “broad lines,” strips possessing a tacitly understood breadth of 1 length
unit; this practice is known from many pre-Modern surveying traditions, and agrees well with the
Babylonian understanding of areas as “thick,” provided with an implicit height of 1 kùš (as inherent
in the metrology of volumes, which coincides with that for areas—see page 17). The “projection”
and “base” of BM 13901 and TMS IX #1 are likely to be secondary innovations due to the school—
different schools, indeed, and therefore different words. They allowed segments to be thought of as
truly one-dimensional while still permitting their transformation into rectangles with width 1.
3The absence of this notion from the text should not prevent it from using it as a technical term of
general validity.
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However, the present text does not proceed like that—Old Babylonian algebra
was a flexible instrument, not a collection of recipes or algorithms to be followed
to the letter. The text finds the half of 7 (that is, of the sum of the length and the
width) and “brings” the outcome 3°30′ to “the things heaped, length and width.”
“To bring” is no new arithmetical operation—the calculation comes afterwards.
The text must be understood literally, the rectangle ⊏⊐ (ℓ + 𝑤, 1

2 ) (represented
by the number 3°30′) is brought physically to the place where length and width
(provided with widths 1

2 and 1
3 ) are to be found. In this way it becomes possible

to “cut off” the rectangle ⊏⊐(ℓ + 𝑤, 1
2 )—as long as it was elsewhere that would

make no sense. In bottom of Figure (4.2), the area that is eliminated is drawn
shaded and black: the rest, in white, will be equal to 11°30′.

Figure 4.2: The reduction of AO 8862 #2.

In this operation, it is obvious that the (shaded) half of the length that had
been “joined” according to the statement has been eliminated. However, more
than the (equally shaded) third of the width has disappeared. How much more
precisely?

It would be easy to subtract 20′(= 1
3 ) from 30′(= 1

2 ), but that may not have
been deemed sufficiently informative.4 In any case, the text introduces a detour

4Alternatively, the trick used by the text could be a leftover from the ways of surveyors not too
familiar with the place-value system; or (a third possibility) the floating-point character of this system
might make it preferable to avoid it in contexts where normal procedures for keeping track of orders
of magnitude (whatever these normal procedures were) were not at hand.
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by the phrase “Do not go beyond!” (the same verb as in the “subtraction by
comparison”). A rectangle ⊏⊐(3,2) is constructed (perhaps one should imagine
it in the corner where 2 and 3 are “inscribed” in Figure 4.2; in any case Figure
4.3 shows the situation). Without further argument it is seen that the half (three
small squares) exceeds the third (two small squares) by one of six small squares,
that is, by a sixth—another case of reasoning by “false position.” Exceptionally,
igi 6 is not “detached” but “given” (namely by the table of reciprocals).

Figure 4.3

We thus know that, in addition to the third of the width, we have eliminated
a piece ⊏⊐(w,10′) (drawn in black); if 𝜆 = ℓ − 10′, we therefore have

𝜆 + 𝑤 = 7 − 10′ = 6°50′ , ⊏⊐(𝜆, 𝑤) = 11°30′.

Figure 4.4

Once more we therefore have a rectangle of which we know the area and the sum
of length and width. The procedure is the same as in the final part of TMS IX
#3—see Figure 4.4; the area that is to be displaced is shown again in light shading
in the position from where it is to be taken and in heavy shading where it has to
be placed. The only difference is terminological: in TMS IX #3, the two “moi-
eties” are “made hold,” here they are “inscribed”—but since a multiplication of a
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number by a number follows immediately, the usual construction of a rectangle
(here a square) must be intended (lines II.13–14).5

In the end, the final addition of the side of the square precedes the subtrac-
tion, as in TMS IX #3. Once more, indeed, it is not the same piece that is involved
in the two operations; there is therefore no need to make it available before it is
added.

VAT 7532

Figure 4.5: The diagram of VAT 7532. The “upper width” is to the left.

Obv.

1. A trapezium. I have cut off a reed. I have taken the reed, by its integrity
2. 1 sixty (along) the length I have gone. The 6th part
3. broke off for me: 1‵12 to the length I have made follow.
4. I turned back. The 3rd part and 1

3 kùš broke off for me:
5. 3 sixty (along) the upper width I have gone.
6. With that which broke off for me I enlarged it:
7. 36 (along) the width I went. 1 bùr the surface. The head (initial magnitude)

of the reed what?
8. You, by your proceeding, (for) the reed which you do not know,
9. 1 may you posit. Its 6th part make break off, 50′ you leave.
10. igi 50′ detach, 1°12′ to 1 sixty raise:

5It is not quite to be excluded that the text does not directly describe the construction but refers to
the inscription twice of 3°25′ on a tablet for rough work, followed by the numerical product—cf.
above, note 11, page 21; in that case, the construction itself will have been left implicit, as is the
numerical calculation in other texts. Even the “inscription” of 2, followed by its igi (II.3 and 6) might
refer to this type of tablet. Then, however, one would expect that the “detachment” of the igi should
follow the inscription immediately; moreover, the inscription of 3 in line II.4 is not followed at all by
“detachment” of its igi, which after all speaks against this reading of the lines II.3–6 and II.21–22.
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11. 1‵12 to ⟨1‵12⟩ join: 2‵24 the false length it gives you.
12. (For) the reed which you do not know, 1 may you posit. Its 3rd part make

break off,
13. 40′ to 3 sixty of the upper width raise:
14. 2‵ it gives you. 2‵ and 36 the lower width heap,
15. 2‵36 to 2‵24 the false length raise, 6‶14‵24 the false surface.
16. The surface to 2 repeat, 1‶ to 6‶14‵24 raise
17. 6‷‵14‷24‶ it gives you. And 1

3 kùš which broke off
18. to 3 sixty raise: 5 to 2‵24, the false length,
19. raise: 12‵. 1

2 of 12‵ break, 6‵ make encounter,
Rev.

1. 36‶ to 6‷‵14‷24‶ join, 6‷‵15‷ it gives you.
2. By 6‷‵15‷, 2‶30′ is equal. 6‵ which you have left
3. to 2‶30‵ join, 2‶36‵ it gives you. igi 6‶14‵24,
4. the false surface, I do not know. What to 6‶14‵24
5. may I posit which 2‶36 gives me? 25′ posit.
6. Since the 6th part broke off before,
7. 6 inscribe: 1 make go away, 5 you leave.
8. ⟨igi 5 detach, 12′ to 25 raise, 5′ it gives you⟩. 5′ to 25′ join: 1

2 nindan,
the head of the reed it gives you.

This problem also deals with a field—yet with a field which the surveyor
would only encounter in dream (or rather, in a nightmare). “Real life” enters
through the reference to the unit bùr, a unit belonging to practical agricultural
administration, and through the reference to measuring by means of a reed cut for
this purpose; its length ( 1

2 nindan) corresponds indeed to a measuring unit often
used in practical life and called precisely a “reed” (gi in Sumerian). One may
also imagine that such reeds would easily break. Finally, the use of the numeral
“sixty” shows us one of the ways to express numbers unambiguously.

Everything else, however—that is, that the area of the field is known before
it is measured, and also the ways to indicate the measures of the pieces that break
off from the reed—shows which ruses the Old Babylonian school masters had to
make use of in order to produce second-degree problems having some taste of
practical life.

For once, Figure 4.5 reproduces a diagram that is traced on the tablet itself.
In general, as also here, diagrams are only drawn on the tablets when they serve to
clarify the statement; they are never used to explain the procedure. On the other
hand, Figure 4.5 shows once more that the solution is known in advance: the
numbers 1‵, 45 and 15 are indeed the measures of the sides expressed in nindan.
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We thus undertake to measure the trapezium by means of a reed of unknown
length𝑅. Wemanage to measure 1‵ reed lengths along the length of the trapezium
before the reed loses a sixth of its length and is reduced to 𝑟 = 5

6 𝑅. What remains
of the length turns out to be 1‵12𝑟 (lines Obv. 2–3).

Then the reed breaks for the second time. According to lines Obv. 4 and 5,
the measure of the “upper width” (to the left)6 is 3‵𝑧, where 𝑧 = 2

3 𝑟− 1
3 kùš is the

length of the reed after this second reduction.
The piece that broke off last is put back into place, and the “(lower) width”

(evidently to the right) is paced out (line Obv. 7) as 36 r. Finally we learn that
the area of the field is 1 bùr = 30‵ sar (1 sar = 1 nindan2), see page 17). We
are asked to find the original length of the reed—its “head” in the sense of “be-
ginning.”

Lines Obv. 9–11 determine the length in units 𝑟 by means of a false posi-
tion: if 𝑅 had been equal to 1, then 𝑟 would have been 50′; conversely, 𝑅 must
correspond to 𝑟 multiplied by igi 50′ = 1°12′. 1‵ steps of 𝑅 thus correspond to
1‵12 ⋅ 𝑟, and the complete length will be

1‵12 ⋅ 𝑟 + 1‵12 ⋅ 𝑟 = 2‵24 ⋅ 𝑟.

Figure 4.6: The doubled trapezium of VAT 7532.

6The position of the “upper” width to the left is a consequence of the new orientation of the cuneiform
script (a counterclockwise rotation of 90°) mentioned in the box “Cuneiform writing.” On tablets, this
rotation took place well before the Old Babylonian epoch, as a consequence of which one then wrote
from left to right. But Old Babylonian scribes knew perfectly well that the true direction was vertically
downwards—solemn inscriptions on stone (for example Hammurabi’s law) were still written in that
way. For reading, scribes may well have turned their tablets 90° clockwise.
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The text speaks of 2‵24 as the “false length,” that is, the length expressed in
units 𝑟.

Another false position is applied in line Obv. 12. The text posits 1 for the
length 𝑟 of the reed once shortened, and deducts that what remains after the loss
of 1

3 must be equal to 40′. Leaving aside the extra loss of 1
3 kùš, the false upper

width (the upper width measured in units 𝑟) is thus 40′ times 3 sixties, that is,
40′ ⋅ 3‵ = 2‵. In other words, the upper width measures 2‵𝑟—still leaving aside
the missing piece of 1

3 kùš.
Since line Obv. 7 indicates that the false (lower) width is 36, we thus know—

with the same reserve concerning the missing 1
3 kùš—the three sides that will

allow us to determine the area of the trapezium in units □(𝑟).
Yet the text does not calculate this area: The surface to 2 repeat. Instead it

doubles the trapezium so as to form a rectangle (see the left part of Figure 4.6),
and the lines Obv. 14–16 calculate the area of this rectangle (the “false surface”),
finding 6‶14‵24 (in the implicit unit □(𝑟)).

If the reed had not lost an ulterior piece of 1
3 kùš, we might now have found

the solution bymeans of a final false position similar to that of BM13901 #10 (see
page 46): according to line Obv. 7, the area of the field is 1 bùr, the doubled area
hence 2 bùr = 1‶ nindan2 (Obv. 16: The surface to 2 repeat, 1‶). However,
things are more complicated here. For each of the 3‵ steps made by the twice
shortened reed a piece of 1

3 kùš is missing from our calculation, in total thus
3‵ ⋅ 1

3 kùš = 1‵ kùš = 5 nindan (1 kùš = 1
12 nindan): And 1

3 which broke
off to 3 sixty raise: 5 (Obv. 17–18). Therefore the area of the real field does not
correspond to what we see to the left in Figure 4.6 but to that which remains after
elimination of the shaded strip to the right. The area of this strip is 5⋅2‵24𝑟 = 12‵𝑟:
5 to 2‵24, the false length, raise: 12‵. The relation between the “false surface”
and that of the doubled real trapezium can now be expressed by the equation

6‶14‵24□(𝑟) − 12‵𝑟 = 1‶.

This non-normalized equation is solved in the usual way. First it is multiplied by
6‶14‵24: 1‶ to 6‶14‵24 raise 6‷‵14‷24‶ it gives you (Obv. 16–17). That leads
to the normalized equation

□(6‶14‵24𝑟) − 12‵ ⋅ (6‶14‵24𝑟) = 6‷‵14‷24‶

or, with 𝑠 = 6‶14‵24𝑟 r as unknown,

□(𝑠) − 12𝑠 = 6‷‵14‷24‶.
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From here onward, the procedure coincides with that of BM 13901 #2 (page 43),
with a small variation in the end. The calculations can be followed in Figure 4.7.

The area 6‷‵14‷24‶ corresponds to the rectangle of (height) 𝑠 and breadth
𝑠 − 12‵. Half of the excess of the height over the breadth is “broken” and repo-
sitioned as seen in the diagram: lightly shaded in the original positions, heavily
shaded where it is moved to. The construction of the completing square is de-
scribed with one of the synonyms of “making hold,” namely “to make encounter”
(Obv. 19).

Figure 4.7

After the usual operations we find that 𝑠 = 6‶14‵24 𝑟 = 2‶36‵, and in line
Rev. 5 that 𝑟 = 25′. We observe, however, that the “moiety” that was moved
around is not put back into its original position, which would have reconstituted
𝑠 in the vertical direction. Instead, the other “moiety,” originally left in place, is
also moved, which allows a horizontal reconstitution 𝑠 = 6‶14‵24 𝑟 = 2‶36: 6‵
which you have left to 2‶30‵ join, 2‶36‵ it gives you.7

In the lines Rev. 6–8, the calculator introduces a third false position: if 𝑅
had been equal to 6, then 𝑟 would be 5. The difference of 1 between 𝑅 and 𝑟 is 1

5
of 𝑟 or 12′ times 𝑟. Now the true value of 𝑟 is 25′; in order to obtain 𝑅 we must
hence “join” 12′ ⋅ 25′ = 5′ to it. Therefore 𝑅 = 25′ + 5′ = 30′ = 1

2 nindan.
7This distinction between two halves of which one is “left” is worth noticing as another proof of the
geometric interpretation—it makes absolutely no sense unless understood spatially.
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Onemight believe this problem type to be one of the absolute favorites of the
Old Babylonian teachers of sophisticated mathematics. We know four variants of
it differing in the choice of numerical parameters. However, they all belong on
only two tablets sharing a number of terminological particularities—for instance,
the use of the logogram 1

2 for the “moiety,” and the habit that results are “given,”
not (for example) “seen” or “coming up.” Both tablets are certainly products
of the same locality and local tradition (according to the orthography based in
Uruk), and probably come from the same school or even the same hand. A simpler
variant with a rectangular field, however, is found in an earlier text of northern
origin, and also in a text belonging together with the trapezium variants; if not
the favorite, the broken reed was probably a favorite.

TMS XIII

As TMS VII #2, this problem is rather difficult. It offers an astonishing example
of application of the geometrical technique to a non-geometrical question.

1. 2 gur 2 pi 5 bán of oil I have bought. From the buying of 1 shekel of
silver,

2. 4 silà, each (shekel), of oil I have cut away.
3. 2

3 mina of silver as profit I have seen. Corresponding to what
4. have I bought and corresponding to what have I sold?
5. You, 4 silà of oil posit and 40, (of the order of the) mina, the profit posit.
6. igi 40 detach, 1′30″ you see, 1′30″ to 4 raise, 6′ you see.
7. 6′ to 12‵50, the oil, raise, 1‵17 you see.
8. 1

2 of 4 break, 2 you see, 2 make hold, 4 you see.
9. 4 to 1‵17 join, 1‵21 you see. What is equal? 9 is equal.
10. 9 the counterpart posit. 1

2 of 4 which you have cut away break, 2 you see.
11. 2 to the 1st 9 join, 11 you see; from the 2nd tear out,
12. 7 you see. 11 silà each (shekel) you have bought, 7 silà you have sold.
13. Silver corresponding to what? What to 11 ¿silà? may I posit
14. which 12‵50 of oil gives me? 1‵10 posit, 1 mina 10 shekel of silver.
15. By 7 silà each (shekel) which you sell of oil,
16. that of 40 of silver corresponding to what? 40 to 7 raise,
17. 4‵40 you see, 4‵40 of oil.

This is another problem which, at superficial reading, seems to reflect a situation
of real practical (here, commercial) life. At closer inspection, however, it turns
out to be just as artificial as the preceding broken-reed question: a merchant has
bought 𝑀 = 2 gur 2 pi 5 bán (= 12‵50 sìla) of fine oil (probably sesame oil).
We are not told how much he paid, but the text informs us that from the quantity
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of oil which he has bought for one shekel (a) he has cut away 4 sìla, selling
what was left (𝑣 = 𝑎 − 4) for 1 shekel; 𝑎 and 𝑣 are thus the reciprocals of the two
prices—wemay speak of them as “rates” of purchase and sale. Moreover, the total
profit 𝑤 amounts to 2

3 mina = 40 shekel of silver. For us, familiar with algebraic
letter symbolism, it is easy to see that the total purchase price (the investment)
must be 𝑀 ÷ 𝑎, the total sales price 𝑀 ÷ 𝑣, and the profit in consequence 𝑤 =
(𝑀 ÷ 𝑣 ) − (𝑀 ÷ 𝑎). Multiplying by 𝑎 ⋅ 𝑣 we thus get the equation

𝑀 ⋅ (𝑎 − 𝑣) = 𝑤 ⋅ 𝑎𝑣,

and since 𝑣 = 𝑎 − 4, the system

𝑎 − 𝑣 = 4 , 𝑎 ⋅ 𝑣 = (4𝑀) ÷ 𝑤.

This system—of the same type as the one proposed inYBC6967, the igûm-igibûm
problem (page 46)—is indeed the one that is solved from line 8 onward. Yet it
has certainly not been reached in the way just described: on one hand because the
Babylonians did not have our letter symbolism, on the other because they would
then have found the magnitude (4𝑀)÷𝑤 and not, as they actually do, (4÷𝑤)⋅𝑀 .

The cue to their method turns up towards the end of the text. Here the text
first finds the total investment and next the profit in oil (4‵40 sìla). These calcu-
lations do not constitute a proof since these magnitudes are not among the data of
the problem. Nor are they asked for, however. They must be of interest because
they have played a role in the finding of the solution.

Figure 4.8 shows a possible and in its principles plausible interpretation.
The total quantity of oil is represented by a rectangle, whose height corresponds
to the total sales price in shekel, and whose breadth is the “sales rate” 𝑣 (sìla per
shekel). The total sales price can be divided into profit (40 shekel) and invest-
ment (purchase price), and the quantity of oil similarly into the oil profit and the
quantity whose sale returns the investment.

The ratio between the latter two quantities must coincide with that into which
the quantity bought for one shekel was divided—that is, the ratio between 4 sìla
and that which is sold for 1 shekel (thus 𝑣).

Modifying the vertical scale by a factor which reduces 40 to 4, that is, by a
factor 4 ÷ 𝑤 = 4 ÷ 40 = 6′, the investment will be reduced to 𝑣, and the area to
(4 ÷ 𝑤) ⋅ 𝑀 = 1‵17. In this way we obtain the rectangle to the right, for which
we know the area (𝑎 ⋅ 𝑣 = 1‵17) and the difference between the sides (𝑎 − 𝑣 = 4),
exactly as we should. Moreover, we follow the text in the order of operations,
and the oil profit as well as the investment play a role.
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Figure 4.8: Geometric representation of TMS XIII.

On the whole, the final part of the procedure follows the model of YBC 6967
(and of other problems of the same type). The only difference occurs in line 10:
instead of using the “moiety” of 𝑎 − 𝑣 which we have “made hold” in line 8, 𝑎 − 𝑣
is “broken” a second time. That allows us to “join” first (that which is joined is
already at disposal) and to “tear out” afterwards.

In YBC 6967, the igûm-igibûm problem (page 46), the geometric quantities
served to represent magnitudes of a different nature, namely abstract numbers.
Here, the representation is more subtle: one segment represents a quantity of
silver, the other the quantity of oil corresponding to a shekel of silver.
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BM 13901 #12

Obv. II

27. The surfaces of my two confrontations I have heaped: 21′40″.
28. My confrontations I have made hold: 10′.
29. The moiety of 21′40″ you break: 10′50″ and 10′50″ you make hold,
30. 1′57″21+25‴40⁗8 is it. 10′ and 10′ you make hold, 1′40″

31. inside 1′57″21{+25}‴40⁗ you tear out: by 17′21{+25}‴40⁗, 4′10″ is
equal.

32. 4′10″ to one 10′50″ you join: by 15′, 30′ is equal.
33. 30′ the first confrontation.
34. 4′10″ inside the second 10′50″ you tear out: by 6′40″, 20′ is equal.
35. 20′ the second confrontation.

With this problem we leave the domain of fake practical life and return to
the geometry of measured geometrical magnitudes. However, the problem we
are going to approach may confront us with a possibly even more striking case of
representation.

This problem comes from the collection of problems about squares which
we have already drawn upon a number of times. The actual problem deals with
two squares; the sum of their areas is given, and so is that of the rectangle “held”
by the two “confrontations” 𝑐1 and 𝑐2 (see Figure 4.9):

□(𝑐1) + □(𝑐2) = 21′40″ , ⊏⊐(𝑐1, 𝑐2) = 10′.

The problem could have been solved by means of the diagram shown in
Figure 4.10, apparently already used to solve problem #8 of the same tablet, which
can be expressed symbolically as follows:

□(𝑐1) + □(𝑐2) = 21′40″ , 𝑐1 + 𝑐2 = 50′.

However, the author chooses a different method, showing thus the flexibility
of the algebraic technique. He takes the two areas □(𝑐1) and □(𝑐2) as sides of

8By error, line 30 of the text has 1′57″46‴40⁗ instead of 1′57″21‴40⁗; a partial product 25 has
been inserted an extra time, which shows that the computation was made on a separate device where
partial products would disappear from view once they had been inserted. This excludes writing on a
clay surface and suggests instead some kind of reckoning board.
The error is carried over in the following steps, but when the square root is taken it disappears. The

root was thus known in advance.
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Figure 4.9: The two squares and the rectangle of BM 13901 #12.

Figure 4.10: The diagram that corresponds to BM 13901 #8.

a rectangle, whose area can be found by making 10′ and 10′ “hold” (see Figure
4.10):

□(𝑐1) + □(𝑐2) = 21′40″ , ⊏⊐(□(𝑐1),□(𝑐2)) = 10′ × 10′ = 1′40″.

In spite of the geometric character of the operations the Babylonians were thus
quite aware that the area of a rectangle whose sides are the squares □(𝑐1) and
□(𝑐2) coincides with that of a square whose side is the rectangle ⊏⊐(𝑐1, 𝑐2)—
which corresponds to our arithmetical rule 𝑝2 ⋅ 𝑞2 = (𝑝𝑞)2.

We now have a rectangle for which we know the area and the sum of the
two sides, as in the problems TMS IX #3 (page 57) and AO 8862 #2 (page 60).
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The solution follows the same pattern, but with one inevitable difference: this
procedure can only give us □(𝑐1) and □(𝑐2); in order to know 𝑐1 and 𝑐2 we must
find out what “is equal by” them. The calculations can be followed on Figure
4.11.

Figure 4.11: The procedure used to solve the rectangle problem.

What is to be taken note of in this problem is hence that it represents areas
by line segments and the square of an area by an area. Together with the other
instances of representation we have encountered, the present example will allow
us to characterize the Old Babylonian technique as a genuine algebra on page 99.

BM 13901 #23

Rev. II

11. About a surface, the four widths and the surface I have heaped, 41′40″.
12. 4, the four widths, you inscribe. igi 4 is 15′.
13. 15′ to 41′40″ you raise: 10′25″ you inscribe.
14. 1, the projection, you join: by 1°10′25″, 1°5′ is equal.
15. 1, the projection, which you have joined, you tear out: 5′ to two
16. you repeat: 10′, nindan, confronts itself.
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Whereas the previous problem illustrates the “modern” aspect of Old Baby-
lonian mathematics, the present one seems to illustrate its archaic side—even
though they come from the same tablet.

This is no real contradiction. The present problem #23 is intentionally ar-
chaic. In other words, it is archaizing and not truly archaic, which explains its
appearance together with the “modern” problems of the same collection. The au-
thor is not modern and archaic at the same time, he shows his virtuosity by play-
ing with archaisms. In several ways, the formulations that are used here seem
to imitate the parlance of Akkadian surveyors. The text speaks of the width of
a square, not of a “confrontation”; further, this word appears in syllabic writing,
which is quite exceptional (cf. note 4, page 16). The introductory phrase “About
a surface”9 seems to be an abbreviated version of the characteristic formula in-
troducing a mathematical riddle: “if somebody asks you thus about a surface …”
(cf. pages 34, 110, 111 and 127). The expression “the four widths”10 reflects an
interest in what is really there and for what is striking, an interest that charac-
terizes riddles in general but also the mathematical riddles that circulated among
the mathematical practitioners of the pre-Modern world (see page 106). Even the
method that is used is typical of riddles: the use of an astonishing artifice that
does not invite generalization.

The problem can thus be expressed in the following way:

4𝑐 + □(𝑐) = 41′40″.

Figure 4.12makes clear the procedure: 4c is represented by 4 rectangles⊏⊐(1, 𝑐);
the total 41′40″ thus corresponds to the cross-shaped configuration where a “pro-
jection” protrudes in each of the four principal directions.

Lines 12–13 prescribe to cut out 1
4 of the cross (demarcated by a dotted line)

and the “joining” of a quadratic complement □(1) to the gnomon that results.
There is no need to “make hold,” the sides of the complement are already there in
the right position. But it is worthwhile to notice that it is the “projection” itself that
is “joined”: it is hence no mere number but a quadratic configuration identified
by its side.

9In the original, the word is “surface” marked by a phonetic complement indicating the accusative.
An accusative in this position is without parallel, and seems to allow no interpretation but the one
given here.
10For once, the determinate article corresponds to the Akkadian, namely to an expression which is
only used to speak about an inseparable plurality (such as “the four quarters of the world” or “the
seven mortal sins”).
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Figure 4.12: The procedure of BM 13901 #23.

The completion of the gnomon gives a square with area 1°10′25″ and thus
side 1°5′. “Tearing out” the “projection”—now as a one dimensional entity—we
find 5′. Doubling this result, we get the side, which turns out to be 10′. Here
again, the text avoids the usual term and does not speak of a “confrontation”
as do the “modern” problems of the collection; instead it says that 10′ nindan
“confronts itself.”

This method is so different from anything else in the total corpus that Neuge-
bauer believed it to be the outcome of a copyist’s mixing up of two problems that
happens to make sense mathematically. As we shall see below (page 109), the
explanation is quite different.

The archaizing aspect, it should be added, does not dominate completely.
Line 12, asking first for the “inscription” of 4 and stating afterwards its igi, seems
to describe the operations on a tablet for rough work that were taught in school
(see note 5, page 65, and page 120).

TMS VIII #1

1. The surface 10′. The 4th of the width to the width I have joined, to 3 I have
gone … over

2. the length 5′ went beyond. You, 4, of the fourth, as much as width posit.
The fourth of 4 take, 1 you see.

3. 1 to 3 go, 3 you see. 4 fourths of the width to 3 join, 7 you see.
4. 7 as much as length posit. 5′ the going-beyond to the to-be-torn-out of the

length posit. 7, of the length, to 4, ¿of the width?, raise,
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5. 28 you see. 28, of the surfaces, to 10′ the surface raise, 4°40′ you see.
6. 5′, the to-be-torn-out of the length, to four, of the width, raise, 20′ you see.

1
2 break, 10′ you see. 10′ make hold,

7. 1′40″ you see. 1′40″ to 4°40′ join, 4°41′40″ you see. What is equal?
2°10′ you see.

8. 10′ ¿…? to 2°10′ join, 2°20′ you see. What to 28, of the surfaces, may I
posit which 2°20′ gives me?

9. 5′ posit. 5′ to 7 raise, 35′ you see. 5′, the to-be-torn-out of the length, from
35′ tear out,

10. 30′ you see, 30′ the length. 5′ the length to 4 of the width raise, 20′ you
see, 20 the length (mistake for width).

In BM 13901 #12 we saw how a problem about squares could be reduced to
a rectangle problem. Here, on the contrary, a problem about a rectangle is reduced
to a problem about squares.

Translated into symbols, the problem is the following;

7
4 𝑤 − ℓ = 5′ , ⊏⊐(ℓ, 𝑤) = 10′

(“to 3 I have gone” in line 1 means that the “joining” of 1
4 𝑤 in line 1 is repeated

thrice). The problem could have been solved in agreement with the methods used
in TMS IX #3 (page 57), that is, in the following way:

7𝑤 − 4ℓ = 4 ⋅ 5′ , ⊏⊐(ℓ, 𝑤) = 10′

7𝑤 − 4ℓ = 20′ , ⊏⊐(7𝑤, 4ℓ) = (7 ⋅ 4) ⋅ 10′ = 28 ⋅ 10′ = 4°40′

7𝑤 = √4°40′ + ( 20′
2 )

2 + 20′
2 = 2°20,

4ℓ = √4°40′ + ( 20′
2 )

2 − 20′
2 = 2

𝑤 = 20′ , ℓ = 30′.
However, once again the calculator shows that he has several strings on his

bow, and that he can choose between them as he finds convenient. Here he builds
his approach on a square whose side (𝑧) is 1

4 of the width (see Figure 4.13). In
that way, the width will equal 4, understood as 4𝑧 (You, 4, of the fourth, as much
as width posit), and the length prolonged by 5′ will be equal to 7, understood as
7z (7 as much as length posit). Line 4 finds that the rectangle with sides 7𝑧 and
4𝑧—in other words, the initial rectangle prolonged by 5′—consists of 7 ⋅ 4 = 28
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Figure 4.13: The method of TMS VIII #1.

small squares □(𝑧).11 These 28 squares exceed the area 10′ by a certain number
of sides (𝑛 ⋅ 𝑧), the determination of which is postponed until later. As usual,
indeed, the non-normalized problem

28 □(𝑧) − 𝑛 ⋅ 𝑧 = 10′

is transformed into

□(28𝑧) − 𝑛 ⋅ (28𝑧) = 28 ⋅ 10′ = 4°40′.

Line 6 finds 𝑛 = 4 ⋅ 5′ = 20′, and from here onward everything follows the
routine, as can be seen on Figure 4.14: 28𝑧 will be equal to 2°20′, and 𝑧 hence to
5′.12 Therefore, the length ℓwill be 7⋅5′ −5′ = 30′, and the width𝑤 4⋅5′ = 20′.

YBC 6504 #4

Rev.

11. So much as length over width goes beyond, made encounter, from inside
the surface I have torn out:

12. 8′20″. 20′ the width, its length what?
13. 20′ made encounter: 6′40″ you posit.

11The use of a “raising” multiplication shows that the calculator does not construct a new rectangle
but bases his procedure on a subdivision of what is already at hand—see the discussion and dismissal
of a possible alternative interpretation of the procedure of BM 13901 #10 in note 5, page 49.
12Line 10 speaks of this as 5′ the length—namely the side of the small square. Some other texts from
Susa also speak of the side of a square as its “length.”
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Figure 4.14: Resolution of the normalized equation of TMS VIII #1.

14. 6′40″ to 8′20″ you join: 15′ you posit.
15. By 15′, 30′ is equal. 30′, the length, you posit.

So far, everything we have looked at was mathematically correct, apart from
a few calculational and copying errors. But everybodywho practises mathematics
sometimes also commits errors in the argument; no wonder then that the Babylo-
nians sometimes did so.

The present text offers an example. Translated into symbols, the problem is
the following:

⊏⊐(ℓ, 𝑤) − □(ℓ − 𝑤) = 8′20″ , 𝑤 = 20′.

Astonishingly, the length is found as that which “is equal by”
⊏⊐(ℓ, 𝑤) − □(ℓ − 𝑤) + □(𝑤)—that is, after a transformation and expressed in
symbols, as √(3𝑤 − ℓ) ⋅ ℓ .

The mistake seems difficult to explain, but inspection of the geometry of the
argument reveals its origin (see Figure 4.15). On top the procedure is presented in
distorted proportions; we see that the “joining” of□(𝑤) presupposes that the mu-
tilated rectangle be cut along the dotted line and opened up as a pseudo-gnomon.
It is clear that what results from the completion of this configuration is not □(ℓ)
but instead—if one counts well—⊏⊐(3𝑤 − ℓ, ℓ). Below we see the same thing,
but now in the proportions of the actual problem, and now the mistake is no longer
glaring. Here, ℓ = 30′ and 𝑤 = 20′, and therefore ℓ − 𝑤 = 𝑤 − (ℓ − 𝑤). In con-
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Figure 4.15: The cut-and-paste operations of YBC 6504 #4.

sequence the mutilated rectangle opens up as a true gnomon, and the completed
figure corresponds to □(ℓ)—but only because ℓ = 3

2 𝑤.
This mistake illustrates an important aspect of the “naive” geometry: as is

generally the case for geometric demonstrations, scrupulous attention must be
paid so that one is not induced into error by what is “immediately” seen. The
rarity of such errors is evidence of the high competence of the Old Babylonian
calculators and shows that they were almost always able to distinguish the given
magnitudes of a problem from what more they knew about it.




