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Chapter 1
Introduction: The Issue – and Some Necessary Tools

“Useless mathematics”

At some moment in the late 1970s, the Danish Union of Mathematics Teachers
for the pre-high-school level asked its members a delicate question: to find an ap-
plication of second-degree equations that fell inside the horizon of their students.

One member did find such an application: the relation between duration and
counter numbers on a compact cassette reader (thus an application that at best the
parents of today’s students will remember!). That was the only answer.

Many students will certainly be astonished to discover that even their teach-
ers do not know why second-degree equations are solved. Students as well as
teachers will be no less surprised that such equations have been taught since 1800
bce without any possible external reference point for the students—actually for
the first 2500 years without reference to possible applications at all (only around
700 ce did Persian and Arabic astronomers possibly start to use them in trigono-
metric computation).

We shall return to the question why one taught, and still teaches, second-
degree equations. But first we shall look at how the earliest second-degree equa-
tions, a few first-degree equations and a single cubic equation looked, and exam-
ine the way they were solved. We will need to keep in mind that even though
some of the problems from which they are derived look practical (they may refer
to mercantile questions, to siege ramps and to the division of fields), the mathe-
matical substance is always “pure,” that is, deprived of any immediate application
outside of mathematics itself.

Rudiments of General History

Mesopotamia (“Land between the rivers”) has designated since antiquity the re-
gion around the two great rivers Euphrates and Tigris—grossly, contemporary
Iraq. Around 3500 bce, the water level in the Persian Gulf had fallen enough
to allow large-scale irrigation agriculture in the southern part of the region, and
soon the earliest “civilization” arose, that is, a society centred on towns and or-
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ganized as a state. The core around which this state took shape was constituted
by the great temples and their clergy, and for use in their accounting this clergy
invented the earliest script (see the box “Cuneiform Writing,” page 10).

The earliest script was purely ideographic (a bit like modern mathemati-
cal symbolism, where an expression like 𝐸 = 𝑚𝑐2 can be explained and even
pronounced in any language but does not allow us to decide in which language
Einstein thought). During the first half of the third millennium, however, pho-
netic and grammatical complements were introduced, and around 2700 bce the
language was unmistakably Sumerian. From then on, and until c. 2350, the
area was divided into a dozen city-states, often at war with each other for water
resources. For this reason, the structure of the state was transformed, and the
war leader (“king”) displaced the temples as the centre of power. From around
2600, a professional specialization emerged, due to wider application of writ-
ing. Accounting was no longer the task of the high officials of temple and king:
the scribe, a new profession, taught in schools and took care of this task.

Around 2340, an Akkadian conqueror subdued the whole of Mesopotamia
(Akkadian is a Semitic language, from the same language family as Arabic and
Hebrew, and it had been amply present in the region at least since 2600). The
Akkadian regional state lasted until c. 2200, after which followed a century of
competing city states. Around 2100, the city-state of Ur made itself the centre
of a new centralized regional state, whose official language was still Sumerian
(even thoughmost of the population, including the kings, probably spokeAkka-
dian). This “neo-Sumerian” state (known as Ur III) was highly bureaucratized
(perhaps more than any other state in history before the arrival of electronic
computers), and it seems that the place-value number notation was created in
response to the demand of the bureaucracy for convenient calculational instru-
ments (see the box “The Sexagesimal Place-Value System,” page 14).

In the long run, the bureaucracy was too costly, and around 2000 a new
phase of smaller states begins. After another two centuries another phase of
centralization centred around the city of Babylon sets in—from which moment
it is meaningful to speak of southern and central Mesopotamia as “Babylo-
nia.” By now (but possibly since centuries), Sumerian was definitively dead,
and Akkadian had become the principal language—in the south and centre the
Babylonian and in the north the Assyrian dialect. None the less, Sumerian
survived in the environment of learned scribes—a bit like Latin in Europe—as
long as cuneiform writing itself, that is, until the first century ce .

The phase from 2000 until the definitive collapse of the Babylonian central
state around 1600 is known as the “Old Babylonian” epoch. All texts analyzed
in the following are from its second half, 1800 to 1600 bce.
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The First Algebra and the First Interpretation

Before speaking about algebra, one should in principle know what is meant by
that word. For the moment, however, we shall leave aside this question; we shall
return to it in the end of the book; all we need to know for the moment is that
algebra has to do with equations.

Figure 1.1: The cuneiform version of the problem BM 13901 #1.

Indeed, when historians of mathematics discovered in the late 1920s that
certain cuneiform texts (see the box “Cuneiform Writing,” page 10) contain “al-
gebraic” problems, they believed everybody knew the meaning of the word.

Let us accept it in order to enter their thinking, and let us look at a very
simple example extracted from a text written during the eighteenth century bce
in the transliteration normally used byAssyriologists—as to the function of italics
and small caps, see page 23 and the box “Cuneiform Writing,” page 10 (Figure
1.1 shows the cuneiform version of the text):

1. a.šàl[am] ù mi-it-ḫar-ti ak-m[ur-m]a 45-e 1 wa-ṣi-tam
2. ta-ša-ka-an ba-ma-at 1 te-ḫe-pe [3]0 ù 30 tu-uš-ta-kal
3. 15 a-na 45 tu-ṣa-ab-ma 1-[e] 1 íb.si8 30 ša tu-uš-ta-ki-lu
4. lìb-ba 1 ta-na-sà-aḫ-ma 30 mi-it-ḫar-tum

The unprepared reader, finding this complicated, should know that for the
pioneers it was almost as complicated. Eighty years later we understand the tech-
nical terminology of Old Babylonian mathematical texts; but in 1928 it had not
yet been deciphered, and the numbers contained in the texts had to provide the
starting point.1

1However, around 1930 one had to begin with texts that were much more complex than the one we
consider here, which was only discovered in 1936. But the principles were the same. The most impor-
tant contributions in the early years were due to Otto Neugebauer, historian of ancient mathematics
and astronomy, and the Assyriologist François Thureau-Dangin.
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Cuneiform Writing

From its first beginning, Mesopotamian writing was made on a flattened piece
of clay, which was then dried in the air after the inscription (a “tablet”). In
the fourth millennium, the signs were drawings made by means of a pointed
stylus, mostly drawings of recognizable objects representing simple concepts.
Complex concepts could be expressed through combination of the signs; a head
and a bowl containing the daily ration of a worker meant “allocation of grain”
(and later “to eat”).

The signs for numbers and measures, however, were made by vertical or
oblique impression of a cylindrical stylus.

With time, the character of the script changed in two ways. Firstly, instead
of tracing signs consisting of curved lines one impressed themwith a stylus with
sharp edges, dissolving the curved lines into a sequence of straight segments.
In this way, the signs seem to be composed of small wedges (whence the name
“cuneiform”).

In the second half of the third millennium, numerical and metrological
signs came to be written in the same way. The signs became increasingly styl-
ized, loosing their pictographic quality; it is then not possible to guess the un-
derlying drawing unless one knows the historical development behind the sign.
Until around 2000 bce, however, the variations of characters from one scribe
to another show that the scribes knew the original drawings.

Let us for instance look at the character which initially depicted a vase
with a spout (left).
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In the middle we see three third-millennium variants of the same character
(because the script was rotated 90 degrees to the left in the second millennium,
it is habitual to show the third-millennium script in the same way). If you know
the origin, it is still easy to recognize the underlying picture. To the right we
see two Old Babylonian variants; here the picture is no longer suggested.

The other change concerns the use of the way the signs were used (which
implies that we should better speak of them as “characters”). The Sumerian
word for the vase is dug. As various literary genres developed alongside ac-
counting (for instance, royal inscriptions, contracts and proverb collections),
the scribes needed ways to write syllables that serve to indicate grammatical
declinations or proper nouns. This syllabic system served also in the writing
of Akkadian. For this purpose, signs were used according to their approximate
phonetic value; the “vase” may thus stand for the syllables dug, duk, tug and
tuk. In Babylonian writing, the Sumerian sign might also serve as a “logogram”
or “word sign” for a word meaning the same as dug—namely karpatum

Words to be read as logograms or in Sumerian are transliterated in small
caps; specialists (cf. Appendix B) often distinguish Sumerian words whose
phonetic value is supposed to be known, which are then written in s p a c e d
w r i t i n g, from those rendered by their “sign name” (corresponding to a pos-
sible reading), which are written as small caps. Phonetic Akkadian writing is
transcribed as italics.

Assyriologists distinguish “transcriptions” from “transliterations.” A
“transcription” is an intended translation into Akkadian written in Latin
alphabet. In a “transliteration” each cuneiform character is rendered separately
according to its presumed phonetic or logographic value.

It was already known that these numbers were written in a place-value sys-
tem with base 60 but without indication of absolute order of magnitude (see the
box “The Sexagesimal System,” page 14). We must suppose that the numbers
appearing in the text are connected, and that they are of at least approximately
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the same order of magnitude (we remember that “1” may mean one as well as 60
or 1

60 ). Let us therefore try to interpret these numbers in the following order:

45′(= 3
4 ) − 1° − 1° − 30′(= 1

2 ) − 30′ − 15′(= 1
4 ) − 45′ − 1° − 1° − 30′ − 1° − 30′.

In order to make the next step one needs some fantasy. Noticing that 30′ is 1
2 ⋅ 1

and 15′ = (30′)2 we may think of the equation

𝑥2 + 1 ⋅ 𝑥 = 3
4 .

Today we solve it in these steps (neglecting negative numbers, a modern inven-
tion):

𝑥2 + 1 ⋅ 𝑥 = 3
4 ⇔ 𝑥2 + 1 ⋅ 𝑥 + ( 1

2 )
2 = 3

4 + ( 1
2 )

2

⇔ 𝑥2 + 1 ⋅ 𝑥 + ( 1
2 )

2 = 3
4 + 1

4 = 1

⇔ (𝑥 + 1
2 )

2 = 1

⇔ 𝑥 + 1
2 = √1 = 1

⇔ 𝑥 = 1 − 1
2 = 1

2 .
As we see, the method is based on addition, to both sides of the equation, of the
square on half the coefficient of the first-degree term (𝑥)—here ( 1

2 )2. That allows
us to rewrite the left-hand side as the square on a binomial:

𝑥2 + 1 ⋅ 𝑥 + ( 1
2 )

2 = 𝑥2 + 2 ⋅ 1
2 ⋅ 𝑥 + ( 1

2 )
2 = (𝑥 + 1

2 )
2.

This small trick is called a “quadratic completion.”
Comparing the ancient text and the modern solution we notice that the same

numbers occur in almost the same order. The same holds for many other texts. In
the early 1930s historians of mathematics thus became convinced that between
1800 and 1600 bce the Babylonian scribes knew something very similar to our
equation algebra. This period constitutes the second half of what is known as the
“Old Babylonian” epoch (see the box “Rudiments of General History,” page 7).

The next step was to interpret the texts precisely. To some extent, the gen-
eral, non-technical meaning of the vocabulary could assist. In line 1 of the prob-
lem on page 9, ak-mur may be translated “I have heaped.” An understanding of
the “heaping” of two numbers as an addition seems natural and agrees with the
observation that the “heaping” of 45′ and 15′ (that is, of 3

4 and 1
4 ) produces 1.

When other texts “raise” (našûm) one magnitude to another one, it becomes more
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difficult. However, one may observe that the “raising” of 3 to 4 produces 12,
while 5 “raised” to 6 yields 30, and thereby guess that “raising” is a multiplica-
tion.

In this way, the scholars of the 1930s came to choose a purely arithmetical in-
terpretation of the operations—that is, as additions, subtractions, multiplications
and divisions of numbers. This translation offers an example:2

1. I have added the surface and (the side of) my square: 45′.
2. You posit 1°, the unit. You break into two 1° ∶ 30′. You multiply (with

each other) [30′] and 30′:
3. 15′. You join 15′ to 45′: 1°. 1° is the square of 1°. 30′, which you have

multiplied (by itself),
4. from 1° you subtract: 30′ is the (side of the) square.

Such translations are still found today in general histories of mathematics.
They explain the numbers that occur in the texts, and they give an almost modern
impression of the Old Babylonian methods. There is no fundamental difference
between the above translation and the solution by means of equations. If the side
of the square is 𝑥, then its area is 𝑥2. Therefore, the first line of the text—the
problem to be solved—corresponds to the equation 𝑥2 +1⋅𝑥 = 3

4 . Continuing the
reading of the translation we see that it follows the symbolic transformations on
page 12 step by step.

However, even though the present translation as well as others made accord-
ing to the same principles explain the numbers of the texts, they agree less well
with their words, and sometimes not with the order of operations. Firstly, these
translations do not take the geometrical character of the terminology into account,
supposing that words and expressions like “(the side of) my square,” “length,”
“width” and “area” of a rectangle denote nothing but unknown numbers and their
products. It must be recognized that in the 1930s that did not seem impossible a
priori—we too speak of 32 as the “square of 3” without thinking of a quadrangle.

But there are other problems. The most severe is probably that the
number of operations is too large. For example, there are two operations
that in the traditional interpretation are understood as addition: “to join to”
(waṣābum/dah

˘
, the infinitive corresponding to the tu-ṣa-ab of our text) and “to

heap” (kamārum/gar.gar, from which the ak-mur of the text). Both operations
are thus found in our brief text, “heaping” in line 1 (where it appears as “add”)
and “joining” in line 3.

2A literal retranslation of François Thureau-Dangin’s French translation. Otto Neugebauer’s Ger-
man translation is equivalent except on one point: where Thureau-Dangin translated “1°, the unit”
Neugebauer proposed “1, the coefficient.” He also transcribed place-value numbers differently.
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The Sexagesimal Place-Value System

The Old Babylonian mathematical texts make use of a place-value number sys-
tem with base 60 with no indication of a “sexagesimal point.” In our notation,
which also employs place value, the digit “1” may certainly represent the num-
ber 1, but also the numbers 10, 100, …, as well as 0.1, 0.01, … . Its value is
determined by its distance from the decimal point.

Similarly, “45” written by a Babylonian scribe may mean 45; but it may
also stand for 45

60 (thus
3
4 ); for 45⋅60; etc. No decimal point determines its “true”

value. The system corresponds to the slide rule of which engineers made use
before the arrival of the electronic pocket calculator. This device also had no
decimal point, and thus did not indicate the absolute order of magnitude. In
order to know whether a specific construction would ask for 3.5𝑚3, 35𝑚3 or
350𝑚3 of concrete, the engineer had recourse to mental calculation.

For writing numbers between 1 and 59, the Babylonians made use of a
vertical wedge ( ) repeated until 9 times in fixed patterns for the numbers 1
to 9, and of a Winkelhaken (a German loanword originally meaning “angular
hook”) ( ) repeated until 5 times for the numbers 10, 20, … , 50.

Amodern reader is not accustomed to reading numbers with undetermined
order of magnitude. In translations of Babylonianmathematical texts it is there-
fore customary to indicate the order of magnitude that has to be attributed to
numbers. Several methods to do that are in use. In the present work we shall
employ a generalization of the degree-minute-second notation. If means
15
60 , we shall transcribe it 15′, if it corresponds to 15

60⋅60 , we shall write 15″. If it
represents 15 ⋅ 60, we write 15‵, etc. If it stands for 15, we write 15 or, if that is
needed in order to avoid misunderstandings, 15°. understood as 10+5⋅60−1

will thus be transcribed 10°5′

understood as 30′ thus means 1
2 .

understood as 45′ means 3
4 .

understood as 12′ means 1
5 ; understood as 12‵ it means 720.

understood as 10′ means 1
6 .

may mean 16‵40 = 1000 or 16°40′ = 16 2
3 , etc.

may mean 1‵40 = 100, 1°40′ = 1 2
3 , 1′40″ = 1

36 , etc.
Outside school, the Babylonians employed the place-value system exclu-

sively for intermediate calculations (exactly as an engineer used the slide rule
fifty years ago). When a result was to be inserted into a contract or an account,
they could obviously not allow themselves to be ambiguous; other notations
allowed them to express the precise number they intended.
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Certainly, we too know about synonyms even within mathematics—for in-
stance, “and,” “added to” and “plus”; the choice of one word or the other depends
on style, on personal habits, on our expectations concerning the interlocutor, and
so forth. Thureau-Dangin , as we see, makes use of them, following the distinc-
tions of the text by speaking first of “addition” and second of “joining”; but he
argues that there is no conceptual difference, and that nothing but synonyms are
involved—“there is only one multiplication,” as he explains without noticing that
the argument is circular.

Synonyms, it is true, can also be found in Old Babylonian mathematics.
Thus, the verbs “to tear out” (nasāḫum/zi) and “to cut off” (ḫarāṣum/kud) are
names for the same subtractive operation: they can be used in strictly analogous
situations. The difference between “joining” and “heaping,” however, is of a
different kind. No text exists which refers to a quadratic completion (above, page
12) as a “heaping.” “Heaping,” on the other hand, is the operation to be used
when an area and a linear extension are added. These are thus distinct operations,
not two different names for the same operation. In the same way, there are two
distinct “subtractions,” four “multiplications” and even two different “halves.”
We shall come back to this.

A translation which mixes up operations which the Babylonians treated as
distinct may explain why the Babylonian calculations lead to correct results; but
it cannot penetrate their mathematical thought.

Further, the traditional translations had to skip certain words which seemed
to make no sense. For instance, a more literal translation of the last line of our
small problem would begin “from the inside of 1°” (or even “from the heart” or
“from the bowels”). Not seeing how a number 1 could possess an “inside” or
“bowels,” the translators tacitly left out the word.

Other words were translated in a way that differs so strongly from their nor-
mal meaning that it must arouse suspicion. Normally, the word translated “unity”
by Thureau-Dangin and “coefficient” by Neugebauer (waṣītum, from waṣûm, “to
go out”) refers to something that sticks out, as that part of a building which ar-
chitects speak about as a “projection.” That must have appeared absurd—how
can a number 1 “stick out”? Therefore the translators preferred to make the word
correspond to something known in the mathematics of their own days.

Finally, the order in which operations are performed is sometimes different
from what seems natural in the arithmetical reading.

In spite of these objections, the interpretation that resulted in the 1930s was
an impressive accomplishment, and it remains an excellent “first approximation.”
The scholars who produced it pretended nothing more. Others however, not least
historians of mathematics and historically interested mathematicians, took it to be
the unique and final decipherment of “Babylonian algebra”—so impressive were
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the results that were obtained, and so scary the perspective of being forced to read
the texts in their original language. Until the 1980s, nobody noticed that certain
apparent synonyms represent distinct operations.3

A New Reading

As we have just seen, the arithmetical interpretation is unable to account for the
words which the Babylonians used to describe their procedures. Firstly, it con-
flates operations that the Babylonians treated as distinct; secondly, it is based
on operations whose order does not always correspond to that of the Babylonian
calculations. Strictly speaking, rather than an interpretation it thus represents a
control of the correctness of the Babylonianmethods based onmodern techniques.

A genuine interpretation—a reading of what the Old Babylonian calculators
thought and did—must take two things into account: on one hand, the results
obtained by the scholars of the 1930s in their “first approximation”; on the other,
the levels of the texts which these scholars had to neglect in order to create this
first approximation.

In the following chapters we are going to analyze a number of problems
in a translation that corresponds to such an interpretation. First some general
information will be adequate.

Representation and “variables”
In our algebra we use x and y as substitutes or names for unknown numbers.

We use this algebra as a tool for solving problems that concern other kinds of
magnitudes, such as prices, distances, energy densities, etc.; but in all such cases
we consider these other quantities as represented by numbers. For us, numbers
constitute the fundamental representation.

With the Babylonians, the fundamental representation was geometric. Most
of their “algebraic” problems concern rectangles with length, width and area4, or

3Nobody, except perhaps Neugebauer, who on one occasion observes (correctly) that a text makes
use of a wrong multiplication. In any case it must be noticed that neither he nor Thureau-Dangin ever
chooses a wrong operation when restituting the missing part of a broken text.
4More precisely, the word translated “length” signifies “distance”/“extension”/“length” while that
which is translated “width” means “front”/“forehead”/“head.” They refer to the idea of a long and
narrow irrigated field. The word for the area (eqlum/a.šà) originally means “field” but in order to
reserve it for technical use the texts use other (less adequate) words when speaking of genuine fields
to be divided. In what follows, the term will be translated “surface,” which has undergone a similar
shift of meaning, and which stands both for the spatial entity and its area.
A similar distinction is created by other means for lengths and widths. If these stand for “algebraic”

variables they are invariably written with the logograms uš and sag̃; if used for general purposes (the
length of a wall, a walking distance) they may be provided with phonetic complements or written
syllabically as šiddum and pūtum.
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squares with side and area. We shall certainly encounter a problem below (YBC
6967, page 46) that asks about two unknown numbers, but since their product is
spoken of as a “surface” it is evident that these numbers are represented by the
sides of a rectangle.

An important characteristic of Babylonian geometry allows it to serve as an
“algebraic” representation: it always deals with measured quantities. The mea-
sure of its segments and areas may be treated as unknown—but even then it exists
as a numerical measure, and the problem consists in finding its value.

Units
Every measuring operation presupposes a metrology, a system of measuring

units; the numbers that result from it are concrete numbers. That cannot be seen
directly in the problem that was quoted above on page 9; mostly, the mathemat-
ical texts do not show it since they make use of the place-value system (except,
occasionally, when given magnitudes or final results are stated). In this system,
all quantities of the same kind were measured in a “standard unit” which, with
very few exceptions, was not stated but tacitly understood.

The standard unit for horizontal distance was the nindan, a “rod” of c.
6m.5 In our problem, the side of the square is thus 1

2 nindan, that is, c. 3m. For
vertical distances (heights and depths), the basic unit was the kùš, a “cubit” of
1

12 nindan (that is, c. 50 cm).
The standard unit for areas was the sar, equal to 1 nindan2. The stan-

dard unit for volumes had the same name: the underlying idea was that a base
of 1 nindan2 was provided with a standard thickness of 1 kùš. In agricultural
administration, a better suited area unit was used, the bùr, equal to 30‵ sar, c.
6 1

2 ha.
The standard unit for hollow measures (used for products conserved in vases

and jars, such as grain and oil) was the sìla, slightly less than one litre. In practi-
cal life, larger units were often used: 1 bán = 10 sìla, 1 pi = 1‵ sìla, and 1 gur,
a “tun” of 5‵ sìla.

Finally, the standard unit for weights was the shekel, c. 8 gram. Larger units
were the mina , equal to 1‵ shekel (thus close to a pound)6 and the gú, “a load”

5In the absence of a sexagesimal point it is in principle impossible to know whether the basic unit
was 1 nindan, 60 nindan or 1

60 nindan. The choice of 1 nindan represents what (for us, at least)
seems most natural for an Old Babylonian calculator, since it already exists as a unit (which is also
true for 60 nindan but not for 1

60 nindan) and because distances measured in nindan had been
written without explicit reference to the unit for centuries before the introduction of the place-value
system.
6It is not to be excluded that the Babylonians thought of the mina as standard unit, or that they kept
both possibilities open.
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equal to 1‶ shekel, c. 30 kilogram. This last unit is equal to the talent of the Bible
(where a talent of silver is to be understood).

Additive Operations
There are two additive operations. One (kamārum/ul.gar/gar.gar), as we

have already seen, can be translated “to heap a and b,” the other (waṣābum/dah
˘
)

“to join j to S.” “Joining” is a concrete operation which conserves the identity of
S. In order to understand what that means we may think of “my” bank deposit S;
adding the interest j (in Babylonian called precisely ṣibtum, “the joined,” a noun
derived from the verb waṣābum) does not change its identity as my deposit. If
a geometric operation “joins” j to S, S invariably remains in place, whereas, if
necessary, j is moved around.

“Heaping,” to the contrary, may designate the addition of abstract numbers.
Nothing therefore prevents from “heaping” (the number measuring) an area and
(the number measuring) a length. However, even “heaping” often concerns enti-
ties allowing a concrete operation.

The sum resulting from a “joining” operation has no particular name; indeed,
the operation creates nothing new. In a heaping process, on the other hand, where
the two addends are absorbed into the sum, this sum has a name (nakmartum,
derived from kamārum, “to heap”) which we may translate “the heap”; in a text
where the two constituents remain distinct, a plural is used (kimrātum, equally
derived from kamārum); we may translate it “the things heaped” (AO 8862 #2,
translated in Chapter 4, page 60).

Subtractive Operations
There are also two subtractive operations. One (nasāḫum/zi), “fromB to tear

out a” is the inverse of “joining”; it is a concrete operation which presupposes a
to be a constituent part of B. The other is a comparison, which can be expressed
“A over B, d goes beyond” (a clumsy phrase, which however maps the structure
of the Babylonian locution precisely). Even this is a concrete operation, used
to compare magnitudes of which the smaller is not part of the larger. At times,
stylistic and similar reasons call for the comparison being made the other way
around, as an observation of B falling short of A (note 4, page 48 discusses an
example).

The difference in the first subtraction is called “the remainder” (šapiltum,
more literally “the diminished”). In the second, the excess is referred to as the
“going-beyond” (watartum/dirig).

There are several synonyms or near-synonyms for “tearing out.” We shall
encounter “cutting off” (ḫarāṣum) (AO 8862 #2, page 60) and “make go away”
(šutbûm) (VAT 7532, page 65).
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“Multiplications”
Four distinct operations have traditionally been interpreted as multiplication.
First, there is the one which appears in the Old Babylonian version of the

multiplication table. The Sumerian term (a.rá, derived from the Sumerian verb
rá, “to go”) can be translated “steps of.” For example, the table of the multiples
of 6 runs:

1 step of 6 is 6
2 steps of 6 are 12
3 steps of 6 are 18
…

Three of the texts we are to encounter below (TMS VII #2, page 34, TMS
IX #3, page 57, and TMS VIII #1, page 78) also use the Akkadian verb for “go-
ing” (alākum) to designate the repetition of an operation: the former two repeat a
magnitude s n times, with outcome 𝑛 ⋅ 𝑠 (TMS VII #2, line 18; TMS IX #3, line
21); TMS VIII #1 line 1 joins a magnitude s n times to another magnitude 𝐴, with
outcome 𝐴 + 𝑛 ⋅ 𝑠.

The second “multiplication” is defined by the verb “to raise” (našûm/íl/
nim). The term appears to have been used first for the calculation of volumes: in
order to determine the volume of a prism with a base of G sar and a height of h
kùš, one “raises” the base with its standard thickness of 1 kùš to the real height
h. Later, the term was adopted by analogy for all determinations of a concrete
magnitude by multiplication. “Steps of” instead designates the multiplication of
an abstract number by another abstract number.

The third “multiplication” (šutakūlum/gu7.gu7), “to make 𝑝 and 𝑞 hold each
other”—or simply, because that is almost certainly what the Babylonians thought
of, “make 𝑝 and 𝑞 hold (namely, hold a rectangle)”7—is no real multiplication.
It always concerns two line segments 𝑝 and 𝑞, and “to make 𝑝 and 𝑞 hold” means
to construct a rectangle contained by the sides 𝑝 and 𝑞. Since 𝑝 and 𝑞 as well
as the area 𝐴 of the rectangle are all measurable, almost all texts give the nu-
merical value of 𝐴 immediately after prescribing the operation—“make 5 and 5
hold: 25”—without mentioning the numerical multiplication of 5 by 5 explicitly.
But there are texts that speak separately about the numerical multiplication, as “𝑝
steps of 𝑞,” after prescribing the construction, or which indicate that the process
of “making hold” creates “a surface”; both possibilities are exemplified in AO
8862 #2 (page 60). If a rectangle exists already, its area is determined by “rais-
ing,” just as the area of a triangle or a trapezium. Henceforth we shall designate
the rectangle which is “held” by the segments 𝑝 and 𝑞 by the symbol ⊏⊐(𝑝,𝑞),
7The verbal form used would normally be causative-reciprocative. However, at times the phrase
used is “make p together with q hold” which seems to exclude the reciprocative interpretation.
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while □(𝑎) will stand for the square which a segment a “holds together with it-
self” (in both cases, the symbol designates the configuration as well the area it
contains, in agreement with the ambiguity inherent in the concept of “surface”).
The corresponding numerical multiplications will be written symbolically as 𝑝×𝑞
and 𝑎×𝑎.

The last “multiplication” (eṣēpum) is also no proper numerical multiplica-
tion. “To repeat” or “to repeat until 𝑛” (where 𝑛 is an integer small enough to be
easily imagined, at most 9) stands for a “physical” doubling or 𝑛-doubling—for
example that doubling of a right triangle with sides (containing the right angle) 𝑎
and 𝑏 which produces a rectangle ⊏⊐(𝑎, 𝑏).

Division
The problem “what should I raise to d in order to get P?” is a division prob-

lem, with answer 𝑃 ÷ 𝑑. Obviously, the Old Babylonian calculators knew such
problems perfectly well. They encountered them in their “algebra” (we shall see
many examples below) but also in practical planning: a worker can dig N nin-
dan irrigation canal in a day; how many workers will be needed for the digging
of 30 nindan in 4 days? In this example the problem even occurs twice, the an-
swer being (30 ÷ 4) ÷ 𝑁 . But division was no separate operation for them, only
a problem type.

In order to divide 30 by 4, they first used a table (see Figure 1.2), in which
they could read (but they had probably learned it by heart in school8) that igi 4
is 15′; afterwards they “raised” 15′ to 30 (even for that tables existed, learned by
heart at school), finding 7°30′.9

Primarily, igi 𝑛 stands for the reciprocal of n as listed in the table or at least
as easily found from it, not the number 1

𝑛 abstractly. In this way, the Babylonians
solved the problem 𝑃 ÷ 𝑑 via a multiplication 𝑃 ⋅ 1

𝑑 to the extent that this was
possible.

8When speaking of a “school” in the Old Babylonian context we should be aware that we only
know it from textual evidence. No schoolroom has been identified by archaeologists (what was once
believed to be school rooms has turned out to be for instance store rooms). We therefore do not know
whether the scribes were taught in palace or temple schools or in the private homes of a master scribe
instructing a handful of students; most likely, many were taught by private masters. The great number
of quasi-identical copies of the table of reciprocals that were prepared in order to be learned by heart
show, however, that future scribes were not (or not solely) taught as apprentices of a working scribe
but according to a precisely defined curriculum; this is also shown by other sources.
9It may seem strange that the multiplication of igi 4 by 30 is done by “raising.” Is this not a multi-
plication of a number by a number? Not necessarily, according the expression used in the texts when
igi 4 has to be found: they “detach” it. The idea is thus a splitting into 4 equal parts, one of which
is detached. It seems that what was originally split (when the place-value system was constructed)
was a length—namely 1‵ [nindan], not 1 [nindan]. This Ur-III understanding had certainly been
left behind; but the terminological habit had survived.
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Of 1, its 2/3 40

Its half 30

3, its IGI 20

4, its IGI 15

5, its IGI 12

6, its IGI 10

8, its IGI 7 30

9, its IGI 6 40

10, its IGI 6

12, its IGI 5

15, its IGI 4

16, its IGI 3 45

18, its IGI 3 20

20, its IGI 3

24, its IGI 2 30

25, its IGI 2 24

27, its IGI 2 13 20

30, its IGI 2

32, its IGI 1 52 30

36, its IGI 1 40

40, its IGI 1 30

45, its IGI 1 20

48, its IGI 1 15

50, its IGI 1 12

54, its IGI 1 6 40

1, its IGI 1

1 4, its IGI 56 15

1 12, its IGI 50

1 15, its IGI 48

1 20, its IGI 45

1 21, its IGI 44 26 40

Figure 1.2: Translation of the Old Babylonian table of reciprocals (igi).

However, this was only possible if 𝑛 appeared in the igi table. Firstly, that
required that 𝑛 was a “regular number,” that is, that 1

𝑛 could be written as a finite
“sexagesimal fraction.”10 However, of the infinitely many such numbers only a
small selection found place in the table—around 30 in total (often, 1 12, 1 15 and
1 20 are omitted “to the left” since they are already present “to the right”).

In practical computation, that was generally enough. It was indeed presup-
posed that all technical constants—for example, the quantity of dirt a worker
could dig out in a day—were simple regular numbers. The solution of “algebraic”
problems, on the other hand, often leads to divisions by a non-regular divisor 𝑑.
In such cases, the texts write “what shall I posit to 𝑑 which gives me 𝐴?”, giving
immediately the answer “posit 𝑄, 𝐴 will it give you.”11 That has a very natural
explanation: these problems were constructed backwards, from known results.
Divisors would therefore always divide, and the teacher who constructed a prob-
lem already knew the answer as well as the outcome of divisions leading to it.

10And, tacitly understood, that n itself can be written in this way. It is not difficult to show that all
“regular numbers” can be written 2𝑝 ⋅ 3𝑞 ⋅ 5𝑟, where p, q and r are positive or negative integers or zero.
2, 3 and 5 are indeed the only prime numbers that divide 60. Similarly, the “regular numbers” in our
decimal system are those that can be written 2𝑝 ⋅ 5𝑞 , 2 and 5 being the only prime divisors of 10.
11The expression “posit to” refers to the way simple multiplication exercises were written in school:
the two factors were written one above the other (the second being “posited to” the first), and the
result below both.
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Halves
1
2 may be a fraction like any other:

2
3 ,

1
3 ,

1
4 , etc. This kind of half, if it is the

half of something, is found by raising that thing to 30′. Similarly, its 1
3 is found

by raising to 20′, etc. This kind of half we shall meet in AO 8862 #2 (page 60).
But 1

2 (in this case necessarily the half of something) may also be a “natural”
or “necessary” half, that is, a half that could be nothing else. The radius of a circle
is thus the “natural” half of the diameter: no other part could have the same role.
Similarly, it is by necessity the exact half of the base that must be raised to the
height of a triangle in order to give the area—as can be seen on the figure used to
prove the formula (see Figure 1.3).

Figure 1.3

This “natural” half had a particular name (bāmtum), which we may translate
“moiety.” The operation that produced it was expressed by the verb “to break”
(ḫepûm/gaz)—that is, to bisect, to break in two equal parts. This meaning of the
word belongs specifically to the mathematical vocabulary; in general usage the
word means to crush or break in any way (etc.).

Square and “square root”
The product 𝑎 ⋅ 𝑎 played no particular role, neither when resulting from a

“raising” nor from an operation of “steps of.” A square, in order to be something
special, had to be a geometric square.

But the geometric square did have a particular status. One might certainly
“make a and a hold” or “make a together with itself hold”; but one might also
“make a confront itself” (šutamḫurum, from maḫārum “to accept/ receive/ ap-
proach/welcome”). The square seen as a geometric configuration was a “con-
frontation” (mitḫartum, from the same verb).12 Numerically, its value was iden-
tified with the length of the side. A Babylonian “confrontation” thus is its side

12More precisely, the Babylonian word stands for “a situation characterized by the confrontation of
equals.”
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while it has an area; inversely, our square (identified with what is contained and
not with the frame) is an area and has a side. When the value of a “confrontation”
(understood thus as its side) is found, another side which it meets in a corner may
be spoken of as its “counterpart”—meḫrum (similarly from maḫārum), used also
for instance about the exact copy of a tablet.

In order to say that s is the side of a square area Q, a Sumerian phrase (used
already in tables of inverse squares probably going back to Ur III, see imminently)
was used: “by Q, s is equal”—the Sumerian verb being íb.si8. Sometimes, the
word íb.si8 is used as a noun, in which case it will be translated “the equal” in
the following. In the arithmetical interpretation, “the equal” becomes the square
root.

Just as there were tables of multiplication and of reciprocals, there were also
tables of squares and of “equals.” They used the phrases “n steps of n, n2” and
“by n2, n is equal” (1≤n ≤60). The resolution of “algebraic” problems, however,
often involves finding the “equals” of numbers which are not listed in the tables.
The Babylonians did possess a technique for finding approximate square roots
of non-square numbers—but these were approximate. The texts instead give the
exact value, and once again they can do so because the authors had constructed the
problem backward and therefore knew the solution. Several texts, indeed, commit
calculational errors, but in the end they give the square root of the number that
should have been calculated, not of the number actually resulting! An example
of this is mentioned in footnote 8, page 73.

Concerning the Texts and the Translations

The texts that are presented and explained in the following are written in Baby-
lonian, the language that was spoken in Babylonia during the Old Babylonian
epoch. Basically they are formulated in syllabic (thus phonetic) writing—that
which appears as italics on page 11. All also make use of logograms that repre-
sent a whole word but indicate neither the grammatical form nor the pronunci-
ation (although grammatical complements are sometimes added to them); these
logograms are transcribed in small caps (see the box “CuneiformWriting,” page
10). With rare exceptions, these logograms are borrowed from Sumerian, once
the main language of the region and conserved as a scholars’ language until the
first century ce (as Latin in Europe until recently). Some of these logograms cor-
respond to technical expressions already used as such by the Sumerian scribes;
igi is an example. Others serve as abbreviations for Babylonian words, more or
less as viz in English, which represents the shorthand for videlicet in medieval
Latin manuscripts but is pronounced namely.
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As already indicated, our texts come from the second half of the Old Babylo-
nian epoch, as can be seen from the handwriting and the language. Unfortunately
it is often impossible to say more, since almost all of them come from illegal dig-
gings and have been bought by museums on the antiquity market in Baghdad or
Europe.

We have no direct information about the authors of the texts. They never
present themselves, and no other source speaks of them. Since they knew how to
write (and more than the rudimentary syllabic of certain laymen), they must have
belonged to the broad category of scribes; since they knew how to calculate, we
may speak about them as “calculators”; and since the format of the texts refers to a
didactical situation, we may reasonably assume that they were school teachers.13

All this, however, results from indirect arguments. Plausibly, the majority
of scribes never produced mathematics on their own beyond simple computation;
few were probably ever trained at the high mathematical level presented by our
texts. It is even likely that only a minority of school teachers taught such matters.
In consequence, and because several voices speak through the texts (see page
33), it is often preferable to pretend that it is the text itself which “gives,” “finds,”
“calculates,” etc.

The English translations that follow—all due to the author of the book—do
not distinguish between syllabically and logographically written words (readers
who want to know must consult the transliterations in Appendix B). Apart from
that, they are “conformal”—that is, they are faithful to the original, in the struc-
ture of phrases14 as well as by using always distinct translations for words that
are different in the original and the same translation for the same word every
time it occurs unless it is used in clearly distinct functions (see the list of “stan-
dard translations” on page 129). In as far as possible the translations respect the
non-technical meanings of the Babylonian words (for instance “breaking” instead
of “bisecting”) and the relation between terms (thus “confront itself” and “con-
frontation”—while “counterpart” had to be chosen unrelated of the verbal root in
order to respect the use of the same word for the copy of a tablet).

This is not to say that the Babylonians did not have a technical terminology
but only their everyday language; but it is important that the technical meaning of
a word be learned from its uses within the Old Babylonian texts and not borrowed

13On the problem of the “school” see note 8, page 20, and page 101.
14In Akkadian, the verb comes in the end of the phrase. This structure allows a number to be written
a single time, first as the outcome of one calculation and next as the object of another one. In order to
conserve this architecture of the text (“number(s)/operation: resulting number/new operation”), this
final position of the verb is respected in the translations, ungrammatical though it is. The reader will
need to get accustomed (but non-English readers should not learn it so well as to use the construction
independently!).
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(with the risk of being badly borrowed, as has often happened) from our modern
terminology.

The Babylonian language structure is rather different from that of English,
for which reason the conformal translations are far from elegant. But the principle
of conformality has the added advantage that readers who want to can follow the
original line for line in Appendix B (the bibliographic note on page 149 indicates
where the few texts not rendered in the appendix were published).

In order to avoid completely illegible translations, the principle is not fol-
lowed to extremes. In English one has to choose whether a noun is preceded by
a definite or an indefinite article; in Babylonian, as in Latin and Russian, that is
not the case. Similarly, there is no punctuation in the Old Babylonian texts (ex-
cept line breaks and a particle that will be rendered “:”), and the absolute order
of magnitude of place-value numbers is not indicated; minimal punctuation as
well as indications of order of magnitude (′,‵ and °) have been added. Numbers
that are written in the original by means of numerals have been translated as Ara-
bic numerals, while numbers written by words (including logograms) have been
translated as words; mixed writings appear mixed (for instance, “the 17th” and
even “the 3rd” for the third).

Inscribed clay survives better than paper—particularly well when the city
burns together with its libraries and archives, but also when discarded as garbage.
None the less, almost all the tablets used for what follows are damaged. On the
other hand, the language of themathematical texts is extremely uniform and repet-
itive, and therefore it is often possible to reconstruct damaged passages from par-
allel passages on the same tablet. In order to facilitate reading the reconstructions
are only indicated in the translations (as ¿…?) if their exact words are not com-
pletely certain. Sometimes a scribe has left out a sign, a word or a passage when
writing a tablet which however can be restored from parallel passages on the same
or closely kindred tablets. In such cases the restitution appears as〈…〉, while
{…} stands for repetitions and other signs written by error (the original editions
of the texts give the complete information about destroyed and illegible passages
and scribal mistakes). Explanatory words inserted into the texts appear within
rounded brackets (…).

Clay tablets have names, most often museum numbers. The small problem
quoted above is the first one on the tablet BM 13901—that is, tablet #13901 in the
British Museum tablet collection. Other names begin AO (Ancient Orient, Lou-
vre, Paris), VAT (Vorderasiatische Texte, Berlin) or YBC (Yale Babylonian texts).
TMS refers to the edition Textes mathématiques de Suse of a Louvre collection of
tablets from Susa, an Iranian site in the eastern neighborhood of Babylon.

The tablets are mostly inscribed on both surfaces (“obverse” and “reverse”),
sometimes in several columns, sometimes also on the edge; the texts are divided
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in lines read from left to right. Following the original editions, the translations
indicate line numbers and, if actual, obverse/reverse and column.


