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Chapter 7
Superposing Dynamos and Electrons: Electrical Engineering
and Quantum Physics in the Case of Nishina Yoshio
Kenji Ito

Research in quantum physics began in Europe and then spread to many parts of
the world. Outside Europe and North America, Japan was one of the places where
quantum physics research successfully took off before World War II. Although
Japan started absorbing European scientific knowledge in the 18th century,1 mod-
ernized educational and research institutions for the sciences appeared only in the
late 19th century, after the so-called Meiji Restoration. Nevertheless, in the late
1920s, Japanese physicists began producing first-rate theoretical research,2 and in
1935, Yukawa Hideki published his Nobel Prize-winning work on meson theory
(Yukawa 1935).

How could this happen? Answering this would be of some importance for
understanding the spread of quantum physics worldwide, or more generally for
understanding the global dissemination of modern science in the 20th century.
Unless we believe in the teleologically driven dissemination of science, it requires
an explanation why other, vastly different cultures came to adopt European sci-
ence. Instead of giving a full answer to the question of dissemination of quantum
physics, which I will attempt in a separate and much larger work, in this paper
I will show a possible link between preexisting conditions in Japan and the in-
troduction of quantum physics. The main goal is to identify one possible aspect
of these conditions that eased the introduction of quantum physical research into
Japan: electrical engineering.

Nishina Yoshio3 (1890–1951) was among the first generation of Japanese
quantum physicists who produced noteworthy theoretical research in quantum
physics. He established himself as a physicist while staying in Europe, in par-
ticular Copenhagen, and in collaboration with Oskar Klein, carried out signifi-

1The earliest known book on Newtonian physics in Japan is Shizuki Tadao’s liberal translation in
1798 of John Keill’s Introductiones ad Veram Physicam et Veram Astronomiam (1725).

2One example, other than Nishina Yoshio’s work with Oskar Klein described below, is Sugiura
Yoshikatsu’s work on the Heitler-London method, see (Sugiura 1927).

3Following the common academic convention, I write Japanese names in the traditional order, the
family name first, the given name second.
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cant theoretical work on quantum physics, resulting in the Klein-Nishina formula
(Klein and Y. Nishina 1929).4 After his return to Japan in late 1928, he intro-
duced quantum mechanics there. He became a leading figure in this field in Japan,
paving the way for other Japanese physicists.5

Curiously, Nishina was originally trained as an electrical engineer, not a
physicist. When he entered the Sixth Higher School in Okayama at the age of
20 in 1910, he chose engineering as his major.6 Later he advanced to the Depart-
ment of Electrical Engineering at Tokyo Imperial University in 1914. It was only
after his graduation and employment at the Institute for Physical and Chemical
Research (RIKEN) that he changed his career to physics. RIKEN allowed him
to study abroad, from 1921 to December 1928. His stay in Europe during this
period definitively made Nishina a quantum physicist.

Becoming a quantum physicist from Japan must have been difficult enough.
How could Nishina move across, not only the cultural boundary between Japan
and Europe, but also the disciplinary boundary between electrical engineering and
physics? In an attempt to develop a partial answer to this question, I ask: Did the
electrical engineering training that Nishina received prepare him for research in
quantum mechanics?

A late-comer to the industrialized world, Japanese society prioritized prac-
tical subjects such as electrical engineering. These training fields may have pro-
vided intellectual resources and institutional bases that helped motivate, legit-
imize and sustain quantum physical research. The goal of this paper is to explore
such possible links between electrical engineering training and theoretical prac-
tices of quantum mechanics in the local Japanese context to understand how new
theoretical scientific practices traveled across cultures.

The role of an engineering background in the development of physics prac-
tices has been studied in several cases, including Albert Einstein, Henri Poincaré
and Julian Schwinger (Pyenson 1982; 1985; Galison 1997; 2003). It is not within
the scope of this paper to fully study physicists who were involved in engineer-
ing research during their training, as a hobby, or in the context of commissioned
military research. However, given the topic of this paper, an obvious example for
such an investigation is Paul Dirac, who received electrical engineering training
in Bristol. In studying Dirac’s engineering training and his wartime engineer-
ing work on isotope separation, Richard Dalitz stresses Dirac’s engineering and
practical sides and discusses how these could have been integrated into his atti-

4For the history of the Compton effect, see (Stuewer 1975; Brown 2002). For the historical back-
ground and significance of the Klein-Nishina formula in relation to Dirac’s relativistic quantum me-
chanics, see, for example (Kragh 1990).

5For a biographical account of Nishina, see (Ito 2002; Kim 2007).
6“Higher School” kōtō gakkō in pre-World War II Japan was a liberal arts institution of higher edu-

cation, and is not the same as a high school in the United States, for example.
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tude to physics (Dalitz 1990). Peter Galison (2000) shows how Dirac expressed
his ideas in drawings, using a form of projective geometry, which was part of his
engineering training, and how these drawings were suppressed in his published
papers.

These studies indicate that the relationship between engineering and physics
was not a simple deterministic one. In a similar vein, this paper is not an attempt to
provide a causal explanation of how socio-cultural or intellectual contexts shaped
or influenced the way quantum mechanics was introduced into Japan and how
Japanese physicists came to practice quantum physics in a different way. Nor do
I claim that Nishina turned to quantum mechanics or carried out specific theoret-
ical research (such as his collaboration with Klein on the Klein-Nishina formula)
because of his electrical engineering background. In particular, I need to em-
phasize that it is not my intention to show that Nishina did theoretical physics
differently from other physicists because of his earlier training in electrical en-
gineering. Since the main focus of this paper is work that Nishina and Klein
coauthored, such an analysis is out of the question anyway. My goal here is dif-
ferent and more modest. While one could point out various characteristics shared
by quantum mechanics and electrical engineering in general terms, this paper
aims to point out particular characteristics relevant to the case of Nishina’s en-
gineering training and his specific research in quantum mechanics, and to locate
them in the historical context surrounding him. Rather than showing differences,
I seek to find out how Nishina came to do things similar to the work of European
physicists.

I pay particular attention to details of the mathematical practices in engineer-
ing to which Nishina was exposed and accustomed. I explore technical details of
electrical engineering and physics to indicate some resemblances between the the-
oretical practices of the engineering and the quantum physics to which Nishina
was exposed and upon which he drew.

7.1 Engineering in Japan

Scrutinizing socio-cultural contexts of physics in Japan is not the purpose of this
paper, but a brief description might be helpful. Engineering had higher priority
and more prestige than physics in early 20th century Japan. In the process of mod-
ernization after the Meiji Restoration, Japan included engineering in its higher
education from the very beginning, motivated by the need for engineers to build
modern infrastructure, such as telegraphs and railroads. Science was mostly, if
not entirely, meant to be a basis for engineering and was taught in schools mainly
to prepare engineers (Hirosige 1973; Bartholomew 1989). Hence, it was natu-
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ral that atomic physics was often identified as a basis of electrical engineering.
Physics provided a basic understanding of electricity.

At the same time, the electron was one of the foci of atomic physics as it
was introduced into Japan in the early 20th century.7 The result was that there
was an emphasis on the theory of the electron in textbook physics. Simultane-
ously, physicists themselves took advantage of the notoriety of electrons in their
popularizing activities. Here, I give three examples for this. The first, Nagaoka
Hantarō (1865–1950), known for his Saturnian model of an atom,8 was one of
the early Japanese professors of physics at Tokyo Imperial University and the
leading Japanese atomic physicist before the introduction of quantum mechanics.
His popular book, Genkon no denkigaku (Studies of electricity today) (Nagaoka
1912), is an account of the physics related to electricity, including not just classi-
cal electromagnetic theory but also atomic physics, with an obvious focus on the
electron.

The second, Mizuno Toshinojō (1862–1944), was a contemporary but
less-known physicist at Kyoto Imperial University. While Nagaoka’s activities
extended into various areas, Mizuno focused on studies of the electron. His
1912 book, Denshiron (The electron theory), was basically a textbook of atomic
physics (Mizuno 1912). More interestingly, his 1918 book, Densi no katsudō
(Activities of the electron), was a more popular book, aimed at explaining the
recent physics of the electron to a lay audience (Mizuno 1918).

The third example is Aichi Keiichi (1880–1923), another theoretical physi-
cist who worked at Tohoku Imperial University. Known for many highly math-
ematical works on various topics, he wrote a book entitled Denshi no jijoden:
Tsūzoku kagaku kōgi (The autobiography of an electron: A popular science ac-
count), a popular account of atomic physics (Aichi 1923). As in Charles Gibson’s
The Autobiography of an Electron (1911) published over ten years earlier, the
electron takes the role of narrator and describes its properties and roles in nature
and society.

Apparently, these physicists tried to gain popular support and interest by
using the electron to connect their field to electricity. At the same time, as pro-
fessors at Japan’s key higher education institutions, they were in a position to
teach students, who might seek jobs at electric companies, as well as to teach
electromagnetism to future engineers at secondary and tertiary schools.

In light of this context, Nishina’s career appears more cohesive; beginning in
his undergraduate years, he mostly studied topics related to the electron. In fact,

7Other important pre-quantum mechanical topics in physics that had practical implications were
spectroscopy and X-ray physics, which provided training grounds and institutional bases for exper-
imental atomic physicists. Nishina was familiar with these traditions, but I do not discuss this issue
here.

8For a biography of Nagaoka in English, see (Yagi 1974).
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his elder brother, Nishina Teisaku, described the purpose of Nishina’s long stay
in Europe as a study of electricity and assumed that his study would have prac-
tical implications for electrical engineering. This was probably the way Nishina
justified his study abroad to his family and relatives.9

7.2 Nishina Yoshio as an Engineering Student

The connection between electrical engineering and physics went farther than the
fact that both fields dealt with electricity. The theoretical and mathematical as-
pects of these research areas reveal additional similarities. As a student of elec-
trical engineering, Nishina was immersed in a highly theoretical and mathemat-
ical school of electrical engineering under Hō Hidetarō (1872–1931), who was
Nishina’s academic advisor at Tokyo Imperial University.

Hō is known as the author of many electrical engineering textbooks, in par-
ticular works on alternating current circuits and transition phenomena. He is also
known for introducing Charles Proteus Steinmetz’s theory of alternating current
(Steinmetz 1893) to Japan.10 He is best known for his work in Japan on the Hō-
Thévenin theorem.

Nishina’s disciplinary identity was deeply lodged in the alternating current
theory of electrical engineering under the influence of Hō and Steinmetz. In
his later years, when asked to discuss the books that inspired him in his youth,
Nishina listed four: The Mathematical Theory of Electricity and Magnetism by
James Jeans published in 1908, Theory and Calculation of Alternating Current
Phenomena by Steinmetz published in 1897, Wechselstromtechnik by Engelbert
Arnold published in 1902, and Kōryū riron (Alternating current theory) by Hō
published in 1912 (Y. Nishina 1946).11

To illustrate the kinds of physical phenomena Hō treated in his textbook, let
me summarize one example from his Hadō, shindō oyobi hirai (Wave, vibration
and lightning arrester), first published in 1915.12 When electric current flows
along an ideal wire (whose resistance and inductance can be ignored), nothing
happens. Hō constructed a theory that predicts what happens when there are var-
ious kinds of electromagnetic “barriers” along its way. Here, as an example, I

9Nishina Akira, a nephew of Yoshio’s, remembered that when Nishina’s elder brother Teisaku men-
tioned that Yoshio was studying electricity at a party to celebrate Yoshio’s return to Japan in 1929,
Teisaku emphasized how Japan was backward as far as the study of electricity was concerned and
asked the other guests for support for Yoshio (A. Nishina 1975).
10For a biography of Steinmetz, see (Kline 1992).
11Steinmetz’s innovation in alternating current theory was the use of imaginary numbers in under-
standing alternating current circuits. Steinmetz replaced vector diagrams with imaginary numbers.
12In the following discussion, I use the 1923 version of the book (Hō 1923), which probably better
represents the instruction that Nishina received in his student years.
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take the case of electric current in a sinusoidal (wave-like) form and a coil acting
as a “barrier.”

Suppose there is a wire whose inductance and capacitance per length are 𝐿ଵ
and 𝐶ଵ respectively, and there is a coil at point 𝑏, whose inductance is 𝐿. The
coil is infinitesimally short and can be treated as a point. There are currents in
the form of incoming, reflecting and penetrating waves at point 𝑏. Let us say
functions 𝑓ଵ(𝑡), 𝑓ଶ(𝑡), and 𝑓ଷ(𝑡) are the currents of the incoming, reflecting and
penetrating waves. From classical electromagnetic theory, it follows:

𝑓ଶ(𝑡) = 𝑒ି௡௧𝑛∫ 𝑒௡௧𝑓ଵ(𝑡)𝑑𝑡 + 𝐴𝑒ି௡௧ ,
𝑓ଷ(𝑡) = 𝑓ଵ(𝑡) − 𝑒ି௡௧𝑛∫ 𝑒௡௧𝑓ଵ(𝑡)𝑑𝑡 − 𝐴𝑒ି௡௧ ,

(7.1)

where 𝑛 = ଶ
௅ට

௅భ
஼భ and 𝐴 is determined by initial conditions.

For example, if the incoming wave is a half wavelength of a sinusoidal wave
with a certain angular frequency 𝜔:

𝑓ଵ(𝑡) = 𝐼ଵ𝑠𝑖𝑛𝜔𝑡 (0 ≤ 𝑡 ≤ 𝜋
𝜔), (7.2)

the penetrating and reflecting waves would be:

𝑓ଶ(𝑡) = 𝐼ଵට ఠమ
௡మାఠమ 𝑠𝑖𝑛(𝜔𝑡 + 𝜙) − ௡ఠభ

௡మାఠାଶ𝑒
ି௡௧ (0 ≤ 𝑡 ≤ గ

ఠ )
𝑓ଷ(𝑡) = ௡ூభ

√௡మାఠమ 𝑠𝑖𝑛(𝜔𝑡 − 𝜙) + ௡ఠభ
௡మାఠమ 𝑒ି௡௧ (0 ≤ 𝑡 ≤ గ

ఠ )
𝑓ଷ(𝑡) = −𝑓ଶ(𝑡) = ௡ఠభ

௡మାఠమ (1 + 𝑒ି௡(௧ି ഏ
ഘ )) ( గఠ < 𝑡)

𝜙 = 𝑎𝑟𝑐𝑡𝑎𝑛ఠ
௡ .

(7.3)

A case like the one above resembles a one-dimensional scattering problem: a
wave collides with a particle, making a certain interaction with it. In a sense, Hō
solved it to the first order.13 While it would be absurd to see a direct connection
between such work and the problem that Nishina would later deal with in Comp-
ton scattering, there nevertheless seems to be a mathematical affinity between
the problems in physics Nishina worked on starting in the 1920s and the kind of
problems that Hō dealt with and taught in the electrical engineering department.

A possibly more interesting link between Hō’s alternating current theory and
quantum physics is found in the notion of linearity that lies at the heart of both

13The assumption that the coil is infinitely small is equivalent to substituting for the actual curve a
flat line within that length, that is equivalent to the first-order approximation.
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theories. In his textbook on alternating current theory, after describing notations
and fundamental notions, Hō (1912) started the main part of his textbook on al-
ternating current theory with a discussion of the principle of superposition, just
as Dirac (1930) started his textbook on quantum mechanics. Suppose there are
three configurations: 𝐴, 𝐵, and 𝐶. They have the same circuit elements, except:

• Configuration 𝐴: There is a voltage source 𝐸ଵ at point 𝐴, but none at 𝐵;
• Configuration 𝐵: There is a voltage source 𝐸ଶ at point 𝐵, but none at 𝐴;
• Configuration 𝐶: There is a voltage source 𝐸ଵ at point 𝐴, and 𝐸ଶ at 𝐵.

Then one obtains the solution to Configuration 𝐶, where there are sources at both
points 𝐴 and 𝐵, by adding up the solutions to Configurations 𝐴 and 𝐵.

The principle of superposition turned out to be a key component of Hō’s
fame in Japan. In 1922, in seeking to apply this principle to the problem of power
lines, he rediscovered what is now known as Thévenin’s equivalent circuit the-
orem, a cornerstone of circuit theory, which every electrical engineering student
learns today. The theorem makes the calculations of complicated electrical cir-
cuits much easier than they would be if one applied Kirchhoff’s laws directly.
Thévenin’s theorem resembles what Edwin Layton called “engineering sciences”
(Layton 1971, 567). While the value of this theorem mostly lies in its practi-
cality, it is a mid-level theorem, derived rigorously through theoretical consid-
erations from fundamental principles, namely the principle of superposition and
Kirchhoff’s laws. This theorem had been derived previously and sometimes inde-
pendently by several scientists and engineers, including Hermann von Helmholtz,
Léon Charles Thévenin, Hans Ferdinand Mayer and Edward Lawry Norton. Al-
though presented in different formulations, the theorem is essentially a way to
substitute a part of a complex circuit with a simpler equivalent circuit consisting
of a certain voltage source and a resistance. Thévenin formulated the theorem as
follows:

Assuming any system of linear conductors connected in such a man-
ner that to the extremities of each one of them there is connected at
least one other, a system having some electromotive forces, 𝐸ଵ, 𝐸ଶ,
…, 𝐸௡, no matter how distributed, we consider two points 𝐴 and 𝐴ᇱ
belonging to the system and having actually the potentials 𝑉 and 𝑉ᇱ.
If the points 𝐴 and 𝐴ᇱ are connected by a wire 𝐴𝐵𝐴ᇱ, which has a
resistance 𝑟, with no electromotive forces, the potentials of points 𝐴
and 𝐴ᇱ assume different values of 𝑉 and 𝑉ᇱ, but the current 𝐼 flow-
ing through this wire is given by the equation 𝐼 = ௏ି௏ᇲ

ோା௥ , in which 𝑅
represents the resistance of the original system, this resistance being
measured between the points 𝐴 and 𝐴ᇱ, which are considered to be
electrodes. (Suchet 1949, 843–844)
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The proof can be stated simply. Here is a textbook presentation of Thévenin’s
proof without much change from the original. Let us define the following four
configurations:

1. Configuration I is defined as the original system where 𝐴 and 𝐴ᇱ are not
connected as in fig. (7.1).14

2. Configuration I' is defined as the one where 𝐴 and 𝐴ᇱ are connected, and
there is a voltage source of 𝑉 − 𝑉ᇱ at point 𝐵. The voltage source is con-
nected in the opposite direction to 𝐴 and 𝐴ᇱ, so that there is no current
between them as in fig. (7.2).

3. Configuration II is defined as the system having the same resistance as
Configuration I' but no voltage source, except the one at 𝐵 in the opposite
direction to the one in Configuration I' as in fig. (7.3).

4. Configuration III is the system where 𝐴 and 𝐴ᇱ are connected by a wire of
resistance 𝑟 as in fig. (7.4).

Figure 7.1: Configuration I: Unconnected circuit.

14Figures (7.1)–(7.4) produced by the author.
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Figure 7.2: Configuration I': Circuit with an added voltage source.

Figure 7.3: Configuration II: Thévenin’s  equivalent circuit.

Figure 7.4: Configuration III: Connected circuit.

Since there is no current between 𝐴 and 𝐴ᇱ in Configuration I', Configura-
tion I' gives the same voltages and currents at each point as in Configuration I.
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According to the principle of superposition, Configuration III can be obtained
by adding Configuration I' to Configuration II. Since there is no current at 𝐵, the
current at 𝐵 in Configuration III comes only from Configuration II, which is what
the theorem states.

Hō reached a form of this theorem without knowing that others had already
found it. In his 1922 paper on power transmission, Hō devised a way to calculate
the effects of an accidental grounding of a transmission line, by ingeniously using
the principle of superposition. The result was the same as Thévenin’s theorem, ex-
cept that Hō discussed an alternating current circuit instead of a direct current cir-
cuit and grounding instead of shorting. Hō’s proof was equivalent to Thévenin’s.
Hō considered the transmission line grounded by a wire with impedance 𝑅 as in
fig. (7.5). Suppose the voltage at point 𝑎 is given by:

𝑣௔ = 𝑉௠𝑠𝑖𝑛(𝜔𝑡 − 𝜃଴), (7.4)

where 𝑉௠, 𝜔, 𝜃଴ are the amplitude, angular frequency, and initial phase of the
voltage. There will be no current through 𝑅 if there is an electromotive force
with the same strength but in the opposite direction as in fig. (7.6). If there is
an electromotive force with the same strength but in the opposite direction at the
same point as in fig. (7.7), then those two electromotive forces cancel each other
and the result should be the same as fig. (7.5). Since fig. (7.7) can be obtained by
superposing fig. (7.6) and fig. (7.8), the current through 𝑅 can be calculated by
fig. (7.8) (Hō 1922).

Although this was a special case of what we today call Thévenin’s theorem,
Hō’s proof was the same as the proof for the general case. Because of this work,
the theorem is called the Hō-Thévenin theorem in Japan, with Hō’s name firmly
attached. Whether Hō is entitled to be named one of the discoverers of this theo-
rem is not the issue here. What is of interest is that the principle of superposition
was so central to Hō’s work.

Nishina was situated deeply in this tradition of alternating current theory,
in which the principle of superposition dominated. Not only did Nishina read
Hō’s textbooks and attend his classes, he wrote his bachelor’s thesis along the
line manifested by Hō’s derivation of the Hō-Thévenin theorem. The main ques-
tion in Nishina’s thesis was how unbalanced loads would affect an alternator, a
motor, or a rotary transformer in a polyphase system. It relied heavily on Hō’s
and Steinmetz’s work (Y. Nishina 1918).
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Figure 7.5: Grounded circuit (Source: Hō 1922, 193).

Figure 7.6: Circuit equivalent to non-grounded circuit (Source: Hō 1922, 194).

Figure 7.7: Circuit equivalent to grounded circuit (Source: Hō 1922, 194).

Figure 7.8: Hō’s equivalent circuit (Source: Hō 1922, 194).
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Nishina started his bachelor’s thesis with definitions of a few main concepts.
In an 𝑁-phase system, if the voltage is equal in all branches and the phase differ-
ence between the branches is one 𝑁th, the system is called symmetrical. If not,
it is asymmetrical. If the sum of the power in all 𝑁 branches is constant, it is
called balanced, if not, unbalanced. A symmetrical system, for example, can be
unbalanced when loaded unequally.

According to Nishina, the problem of imbalances in three-phase systems was
very practical. Nishina thought that, as the centralization of the electrical power
supply continued, the three-phase system would be the most efficient for gen-
erating and transmitting electric power. However, after the introduction of the
single-phase commutator motor, there arose a demand for single-phase electrical
power supplies. If a single-phase load was supplied with electricity directly from
a three-phase system, the voltage would become unbalanced. Hence, the prob-
lem of an unbalanced load would ensue. With such motivating factors in mind,
Nishina proceeded to the main part of his thesis, which discussed how unbalanced
loads would affect a few types of alternating current device, such as an alternator,
a motor and a rotary transformer.

In the case of the alternator, Nishina examined what would happen when
loads were connected in an unbalanced fashion to a three-phase alternator (that
is when loads were connected to only one or two of the three phases). Treating
the problem theoretically, Nishina argued that unfavorable effects would result.
Terminal voltage would become “unsymmetrical” both in phase and in magni-
tude (Y. Nishina 1918, 94–95). This would increase both iron and copper loss,
reducing efficiency and producing more heat. The unbalanced load would also
cause odd higher harmonics, which would result in an “uncomfortable” humming
noise.

In analyzing the unbalanced system, Nishina applied reasoning similar to
Hō’s “principle of superposition.” In his discussion of the unbalanced three-phase
system, he claimed that it could be considered a superposition of two balanced
three-phase systems rotating in opposite directions, or in his words: “An unbal-
anced polyphase system can be resolved into two balanced components with op-
posite phase rotations, one positive and the other negative.” Nishina cited R. E.
Gilman and Charles LeGeyt Fortescue, who originally “discovered” and “proved”
this theorem (Y. Nishina 1918, 20). In his thesis, Nishina reproduced their proof.

The proof goes as follows. Define 𝜖 as:

𝜖 = 𝑒𝑥𝑝(2𝜋𝑗/𝑛), (7.5)

where 𝑗 is the imaginary unit and 𝑛 is the number of the phase. 𝐸ଵ, 𝐸ଶ, …, 𝐸௡,
and 𝐸ᇱଵ, 𝐸ᇱଶ, …, 𝐸ᇱ௡, are terminal voltages of two symmetrical 𝑛-phase systems,
rotating in opposite directions. Since a factor of 𝜖 rotates the phase of a complex
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number by 2𝜋/𝑛, these terminal voltages of the symmetrical 𝑛-phase systems
can be written as: 𝐸ଵ = 𝐸ଵ, 𝐸ଶ = 𝜖𝐸ଵ, 𝐸ଷ = 𝜖ଶ𝐸ଵ, … , 𝐸௡ = 𝜖௡ିଵ𝐸ଵ and 𝐸ᇱଵ =
𝐸ᇱଵ, 𝐸ᇱଶ = 𝜖𝐸ᇱଵ, 𝐸ᇱଷ = 𝜖ିଶ𝐸ᇱଵ, … , 𝐸ᇱ௡ = 𝜖ି௡ାଵ𝐸ᇱଵ. Nishina’s claim above states that
for any 𝑛 phase system, of which the terminal voltages are 𝑉ଵ, 𝑉ଶ, … , 𝑉ଶ, there
are 𝐸ଵ, 𝐸ᇱଵ, that satisfy 𝑉ଵ = 𝐸ଵ+𝐸ᇱଵ, 𝑉ଶ = 𝐸ଶ+𝐸ᇱଶ, … , 𝑉௡ = 𝐸௡+𝐸ᇱ௡ .Nishina’s
proof goes as follows. If the equations above are multipled by 𝜖௡ , 𝜖௡ିଵ, … , 𝜖ଵ,
then:

𝜖௡𝑉ଵ = 𝜖௡𝐸ଵ + 𝜖௡𝐸ᇱଵ,
𝜖௡ିଵ𝑉ଶ = 𝜖௡𝐸ଵ + 𝜖௡ିଶ𝐸ᇱଵ

⋯
𝜖𝑉௡ = 𝜖௡𝐸ଵ + 𝜖ି௡ାଶ𝐸ᇱଵ.

(7.6)

By summing both sides of the equations, and using the definition of 𝜖, the result
is:

𝜖௡𝑉ଵ + 𝜖(௡ିଵ)𝑉ଶ +…+ 𝜖𝑉௡ = 𝑛𝜖ଶ𝐸ଵ. (7.7)

This determines 𝐸ଵ. 𝐸ᇱଵ can be derived similarly. This derivation indicates
Nishina’s familiarity with the idea of analyzing the physical system by separating
it into superposed components, as well as with the ways of exploiting the linearity
of alternating current circuits, just as Hō had done.

The most interesting aspect of this proof is, however, that it was wrong.
Eq. (7.7) is a necessary condition for the original equations for 𝐸ଵ and 𝐸ᇱଵ, but
it is not guaranteed that the derived forms of 𝐸ଵ and 𝐸ᇱଵ and the other terminal
voltages satisfy the original equations. In fact, they do not satisfy these equations
in general, which one can confirm by simple substitution. As famously shown
by Fortescue (1918), decomposing an 𝑁-phase unbalanced system requires 𝑁-
balanced components. However, since the actual problems Nishina dealt with
were three-phase systems, this theoretical mistake was not catastrophic. In short,
Nishina’s thesis arguments were mathematically inaccurate but, probably helped
by his physical intuition,15 his conclusions were physically correct.

Nishina’s thesis shows his commitment to Hō’s theoretical tradition of elec-
trical engineering, his close ties to Steinmetz’s tradition,16 and his ability in the-

15Nishina could have decomposed an arbitrary unbalanced three-phase system into three, rather than
two, symmetrical systems: two rotating in opposite directions and one not rotating at all. Nishina used
the reverse component to show the production of higher harmonics and other undesirable effects.
These qualitative conclusions did not change significantly whether or not one took the stationary
component into consideration.
16As for Steinmetz’s tradition, see (Kline 1992).
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oretical and physical reasoning. Nishina’s work was theoretical in the sense that
he derived fairly general characteristics of the three-phase system. Although the
thesis reveals Nishina’s relative mathematical weakness compared to some of the
mathematical wizards entering physics at the time, it nonetheless demonstrates
Nishina’s ability to draw physically correct conclusions and highlights his immer-
sion in the Hō tradition, especially his familiarity with Hō’s strategy for exploiting
linearity and superposition to represent physical phenomena.

7.3 The Klein-Nishina Formula

The principle of superposition occupies a central place in quantum mechanics.
In particular, the idea plays a crucial role in Dirac’s formulation of quantum me-
chanics, as manifested by Dirac’s textbook first published in 1930 (Dirac 1930).
This book was soon translated into Japanese by Nishina and his students, includ-
ing Tomonaga Sin-Itiro (Dirac 1936). Hence, it is reasonable to suppose that
Nishina’s familiarity with the principle of superposition through electrical engi-
neering was useful to him when learning quantum mechanics and when carrying
out quantum theoretical research.

This section and the next closely examine Nishina’s earliest and most im-
portant work in theoretical physics, performed in collaboration with Klein, and
resulting in the so-called Klein-Nishina formula (Klein and Y. Nishina 1929). I
explore how Nishina, along with Klein, actually employed the idea of superposi-
tion in his theoretical research in quantum mechanics.

Historically, the Klein-Nishina formula was one of the earliest applications
of Dirac’s theory. It was very quickly confirmed experimentally giving strong
empirical evidence to support Dirac’s theory, which had various conceptual prob-
lems, including the issue of negative energies. Klein and Nishina derived this for-
mula through a semi-classical treatment of Compton scattering. Following Walter
Gordon and Dirac, they used Dirac’s relativistic theory of the electron instead of
the non-relativistic theory. Such a semi-classical approach for the Compton effect
was first explored by Gordon (1926). In his 1926 paper, Gordon proceeded by
comparing classical and quantum mechanical calculations. He had a relatively
simple picture behind his calculation. Incoming radiation disturbs and imparts
motion to an electron through electromagnetic interaction. Gordon first calcu-
lated how the incoming radiation would interact with the electron, both in clas-
sical mechanics and quantum mechanics. When moving, the electron, a charged
particle, emits radiation, which Gordon calculated using a classical electromag-
netic formula. He assumed the emitted radiation to correspond to the outgoing
X-ray observed in the experiment. What Gordon did can be written mathemati-
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cally as follows. He assumed that the incoming radiation was a monochromatic
plane wave, setting its (four-)vector potential Φఈ as:

Φఈ = 𝑎ఈ𝑐𝑜𝑠𝜙, 𝑎ସ = 𝑖𝑎଴
𝜙 = ଶగఔ

௖ (∑𝑛௞𝑥௞ − 𝑐𝑡),
(7.8)

where 𝑐 is the speed of light, 𝑛௞ the vector that gives the direction of the radiation,
𝜈 the frequency of the wave, 𝑎ఈ the amplitude of the wave, and 𝛼 the index of a
four-vector taking the values 1 through 4 (alternatively 0 through 3), whereas 𝑘
is the index of a three-vector, taking the values 1 through 3. The first task was
to solve the equation of motion for the electron. For the quantum mechanical
treatment of this problem, Gordon chose to use the Klein-Gordon equation:

ቆ෍( ℎ
2𝜋𝑖

𝜕
𝜕𝑥ఈ

− 𝑒
𝑐Φఈ)ଶ +𝑚ଶ𝑐ଶቇΨ = 0, (7.9)

where Ψ is the wave function. In the presence of the above-mentioned incoming
radiation, this equation can be solved to first order, giving:

𝑊 = 𝑝𝑥 + 𝑝𝑏
𝑝𝑙 𝑠𝑖𝑛𝜙, Ψ = 𝑒

మഏ೔
೓ ௐ , (7.10)

where 𝑏ఈ = ௘
௖𝑎ఈ, 𝑙௞ = ଶగఔ

௖ 𝑛௞ , 𝑙଴ = 𝑖2௣ఔ௖ , and 𝑝𝑥, 𝑝𝑏, 𝑝𝑙 are all inner products of
four vectors.

In classical mechanics, where the electron can be considered a point mass,
the electromagnetic wave resulting from its motion is easily calculated. In par-
ticular, the frequency of this wave is trivially the same as the frequency of the
moving electron. The quantum mechanical treatment required a more compli-
cated procedure, since the electron needed to be considered not as a point mass
but as a spatially distributed wave.

From the specific solutions of the equation, Gordon wrote up the general
form of the solution as an arbitrary superposition of them:

Ψ = න𝑧(𝔭)𝐶(𝔭)𝑒
మഏ೔
೓ ௐ𝑑𝔭 (𝑑𝔭 = 𝑑𝑝ଵ𝑑𝑝ଶ𝑑𝑝ଷ), (7.11)

where 𝑧(𝔭) is a weight and 𝐶(𝔭) is a normalization factor (Gordon 1926, 125).
Gordon assumed that the electric current in quantum mechanics should take the
following form:

𝑠ఈ =
1
𝑖 (Ψ̄

𝜕Ψ
𝜕𝑥ఈ

−Ψ𝜕Ψ̄𝜕Ψ − 4𝜋𝑖
ℎ

𝑒
𝑐ΦఈΨΨ̄). (7.12)
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Then he plugged this expression into the classical electromagnetic formula for
the retarded potential,

Φᇱ
ఈ =

1
𝑐 න

[𝑠ఈ]
𝑅 𝑑𝑥 (𝑑𝑥 = 𝑑𝑥ଵ𝑑𝑥ଶ𝑑𝑥ଷ), (7.13)

which gives the electromagnetic field caused by the current. Here, 𝑅 is the spatial
distance between the volume element 𝑑𝑥 of the integral and the point in question.
The brackets [ ] indicate that 𝑡 in 𝑠ఈ should be substituted by (𝑡 − 𝑅/𝑐). Then,
Gordon calculated the frequency and intensity of the induced radiation. The re-
sult, according to Gordon, agreed with the one obtained by Dirac in his 1926
paper:

𝐼 = 𝑒ସ
𝑚ଶ𝑐ସ𝑟ଶ 𝐼଴

𝑠𝑖𝑛ଶ𝜙
(1 + 𝛼(1 − 𝑐𝑜𝑠𝜃))ଷ , (7.14)

where 𝜙 is the angle between the electric field and the observed direction, 𝜃 the
angle between the direction of the incoming radiation and the observed direction,
𝐼଴ the intensity of the incoming radiation, and 𝑟 the distance between the point
of scattering and the point of observation. It was approximately identical to the
formula obtained by Arthur Compton.

Klein and Nishina adopted Gordon’s approach, but used Dirac’s relativistic
theory of electrons instead of the Klein-Gordon equation and the formula for the
electron current given by Gordon. The first step is to solve the Dirac equation for
a free electron, whose spin is zero on average, and for an electron in a monochro-
matic unpolarized radiation. The Klein-Gordon equation is replaced by the Dirac
equation:

ቆ𝐸 + 𝑐𝑉
𝑐 + 𝜌ଵ(𝜎, 𝔭 +

𝑒
𝑐𝔄) + 𝜌ଷ𝑚𝑐ቇΨ = 0, (7.15)

in which 𝜎,𝜌 are (three-)vectors of 4 by 4 matrices given by Dirac, whose ele-
ments satisfy the following relations:

𝜎ଶ௥ = 1, 𝜎௥𝜎ଶ + 𝜎ଶ𝜎௥ = 0 (𝑟 ≠ 𝑠)
𝜌ଶ௥ = 1, 𝜌௥𝜌ଶ + 𝜌ଶ𝜌௥ = 0 (𝑟 ≠ 𝑠)

𝜌௥𝜎௧ = 𝜎௧𝜌௥ = 0.
(7.16)

Suppose the monochromatic radiation is given by a vector potential of the fol-
lowing form:

𝔄 = 𝔞𝑒௜ఔ(௧ି 𝔫𝔯
೎ ) + �̄�𝑒ି௜ఔ(௧ି 𝔫𝔯

೎ ), (7.17)
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where 𝔫 is the unit vector in the direction of the incoming wave. Nishina and
Klein calculated the solution up to first order:

𝜙(𝔭) = 𝜙଴(𝔭){1 + 𝑓(𝔭)𝑒௜ఔ(௧ି
(𝔫𝔯)
೎ ) + ̄𝑓(𝔭)𝑒ି௜ఔ(௧ି

(𝔫𝔯)
೎ )},

𝜓(𝔭) = {1 + 𝑔(𝔭)𝑒௜ఔ(௧ି
(𝔫𝔯)
೎ ) + �̄�(𝔭)𝑒ି௜ఔ(௧ି

(𝔫𝔯)
೎ )}𝜓଴(𝔭),

(7.18)

in which 𝜙଴(𝔭) and 𝜓଴(𝔭) are eigenfunctions of a free electron:

𝜙଴(𝔭) = 𝑢(𝔭)𝑒
೔
೓ [ா௧ି(𝔭𝔯)], 𝜓଴(𝔭) = 𝑣(𝔭)𝑒

ష೔
೓ [ா௧ି(𝔭𝔯)], (7.19)

and 𝑓, ̄𝑓 and 𝑔, �̄� are constant matrices, determined by:

𝑓(𝔭) = ௘
ଶ௛ఔ(ா/௖ି(𝔫𝔭)) {2(𝔞𝔭) − ℎ(𝜎𝜂) − 𝑖ℎ𝜌ଵ(𝜎𝜖)},

̄𝑓(𝔭) = − ௘
ଶ௛ఔ(ா/௖ି(𝔫𝔭)) {2(�̄�𝔭) + ℎ(𝜎�̄�) − 𝑖ℎ𝜌ଵ(𝜎�̄�)},

𝑔(𝔭) = − ௘
ଶ௛ఔ(ா/௖ି(𝔫𝔭)) {2(𝔞𝔭) + ℎ(𝜎𝜂) + 𝑖ℎ𝜌ଵ(𝜎𝜖)},

�̄�(𝔭) = ௘
ଶ௛ఔ(ா/௖ି(𝔫𝔭)) {2(�̄�𝔭) + ℎ(𝜎�̄�) + 𝑖ℎ𝜌ଵ(𝜎�̄�)}.

⎫
⎪

⎬
⎪
⎭

(7.20)

Here, 𝜖 and �̄� or 𝜂 and �̄� respectively depend on the electric and magnetic fields
of the radiation, ℌ and 𝔇:

𝜖 = − ௜ఔ
௖ 𝔞, �̄� = ௜ఔ

௖ �̄�,
𝜂 = − ௜ఔ

௖ [𝔫𝔞], �̄� = ௜ఔ
௖ [𝔫𝔞].

ቑ (7.21)

The general solution of the wave equations arises from a superposition of all pos-
sible solutions of the form (7.18) up to the considered approximation.

Φ = න𝜙(𝔭)𝑑𝔭,Ψ = න𝜓(𝔭)𝑑𝔭. (7.22)

The second step is to calculate the current density using this solution. The
following formula for the current density is given by Dirac in his 1928 paper
(Dirac 1928):

𝔍 = 𝑒𝑐Ψ𝜌ଵ𝜎Ψ = 𝑒𝑐නන𝜙(𝔭)𝜌ଵ𝜎𝜓(𝔭ᇱ)𝑑𝔭𝑑𝔭ᇱ. (7.23)

Inserting the solutions above, we have:
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𝔍 = 𝔍଴ + 𝑐𝑒∫∫𝑑𝔭𝑑𝔭ᇱ{𝑢(𝔭)[𝜌ଵ𝜎𝑔(𝔭ᇱ)
+𝑓(𝔭)𝜌ଵ𝜎]𝑣(𝔭ᇱ)𝑒

೔
೓ [(ாା௛ఔିா

ᇲ)௧ି(𝔭ା𝔫೓ഌ೎ ି𝔭ᇲ)𝔯]

+𝑐.𝑐.}.
(7.24)

Using the formula for the retarded potential, this electric current causes radiation
𝔄ᇱ:

𝔄ᇱ = ௖
௥ ∫∫𝑑𝑝𝑑𝑝ᇱ{𝑒

೔
೓ (ாା௛௥ିா

ᇲ)(௧ି ೝ
೎ ) ∫𝑑𝔯𝑢(𝔭)[𝜌ଵ𝜎𝑔(𝔭ᇱ)

+𝑓(𝔭)𝜌ଵ𝜎]𝑣(𝔭ᇱ)𝑒ି
೔
೓ [𝔭ି𝔭

ᇲା𝔫೓ഌ೎ ି𝔫ᇲ ಶశ೓ഌషಶ
ᇲ

೎ ]𝔯

+𝑐.𝑐.},
(7.25)

where ∫𝑑𝔯 means the integration ∫𝑑𝑥ଵ ∫𝑑𝑥ଶ ∫𝑑𝑥ଷ over the entire region avail-
able to the electron.

By further calculation, and using Maxwell’s equations and various relations
that the Dirac matrices satisfy, we have for the magnetic field 𝔇଴:

𝔇଴ = (ଶగ௛)య௘మఔᇲ

ଶ௠௖మ௥(ఔିఔᇲା మ೘೎మ
೓ )

ට ாᇲఔᇲ
௠௖మఔ {𝑑(

ଵ
ఔ (𝔫ᇱ𝜖)(𝜈ᇱ − 𝜈)[[𝔫ᇱ𝔫]

−𝜈ᇱ( ଵఔ +
ଵ
ఔᇲ )

ଶ ௠௖మ
௛ [𝔫ᇱ𝜖]) − 𝑖[( ଵఔᇲ −

ଵ
ఔ ((𝔰, 𝔫𝜈 − 𝔫ᇱ𝜈ᇱ)((𝔫ᇱ𝜖)𝔫

−(𝔫𝔫ᇱ)𝜖) + (𝜈 − 𝜈ᇱ + ଶ௠௖మ
௛ )((𝔰𝔫ᇱ)𝜖 − (𝔫ᇱ𝜖)𝔰))

+ ଶ
ఔ (𝜖𝔫ᇱ)((𝔫ᇱ𝔰)(𝔫𝜈 − 𝔫ᇱ𝜈ᇱ) + (𝜈ᇱ − (𝔫𝔫ᇱ)𝜈)𝔰)

−( ଵఔ +
ଵ
ఔᇲ )((𝔫[𝜖𝔰])𝜈[𝔫

ᇱ𝔫] + 𝜈ᇱ(𝔫ᇱ[𝔫𝜖])[𝔫ᇱ𝔰])]}𝑒௜ఔᇲ(௧ି ೝ
೎ )

+𝑐.𝑐.

(7.26)

Here, 𝔫ᇱ is a unit vector in the direction of observation, 𝜈ᇱ is the frequency of the
outgoing radiation, and the following abbreviations are used:

𝑢(𝔭)𝜎𝑣(𝔭ᇱ) = 𝔰, 𝑢(𝔭ᇱ)𝜎𝑣(𝔭) = �̄�
𝑢(𝔭)𝑣(𝔭ᇱ) = 𝑑, 𝑢(𝔭ᇱ)𝑣(𝔭) = �̄�.

ቑ (7.27)

The fourth and final step is to calculate an observable physical quantity, such as
the intensity of scattered radiation. For this, we need to calculate the expecta-
tion value of 𝔇ଶ

଴. Beside obviously meaning a long calculation, including ma-
nipulations of Dirac matrices, this also involves the question of how to evaluate
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expectation values, which I discuss closely in the following section. The result
is:

�̄�ଶ
଴ =

𝑒ସ
𝑚ଶ𝑐ଶ𝑟ଶ (

𝜈ᇱ
𝜈 )

ଷ{( 𝜈𝜈ᇱ +
𝜈ᇱ
𝜈 )𝜖

ଶ − 2(𝔫ᇱ𝜖)ଶ}. (7.28)

From this, if we write the angle between the observation direction and the direc-
tion of the incoming wave as Θ, and the angle between the observation direction
and the electric force of the incoming wave as 𝜃, the intensity of the outgoing
radiation is:

𝐼 = 𝐼଴
𝑒ସ

𝑚ଶ𝑐ସ𝑟ଶ
sinଶ 𝜃

(1 + 𝛼(1 − cosΘ))ଷ ቆ1 + 𝛼ଷ (1 − cosΘ)ଶ
2 sinଶ 𝜃(1 + 𝛼(1 − cosΘ))ቇ ,

(7.29)
where 𝛼= ௛ఔ

௠௖మ , 𝐼଴ is the intensity of the incoming radiation.
One could point out that this particular approach to this problem is reminis-

cent of electrical engineering in various ways. After all, calculating electromag-
netic waves emitted by electric current is one of the foremost topics of electrical
engineering.

7.4 Superposition of States in the Klein-Nishina Paper

Although the fourth step above might appear to be a very lengthy and complex, but
straightforward calculation, in reality, it was more than that. Yazaki Yūji (1992)
has clarified Klein and Nishina’s thought process by closely studying the Klein-
Nishina paper and the extensive archival materials that Nishina left at RIKEN.
According to Yazaki, the main physical problem Nishina and Klein faced was
to determine the initial and final states of the electron and to calculate the aver-
age of the magnetic field. The procedure for calculating an average of a physical
quantity was neither standardized nor clear at this point. It was even less apparent
because of the semi-classical approach. Today, we know that we need to calculate
contributions from orthogonal states, but in their time, the notion of orthogonality
and its relevance to the calculation of a quantum statistical average was not clear.
Klein and Nishina thought that they would take the average of two “indepen-
dent states,” such as the two states having magnetic moments (spin) in opposite
directions. However, the states for spin up and down along the 𝑥ଷ-axis satisfy
the Dirac equation only when 𝔭 = 0. Eventually, they solved this problem using
the method of Lorentz transformation that Klein developed (see below on page
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203). As Yazaki points out, physical considerations were Klein and Nishina’s
main concern (Yazaki 1992).17

My aim here, however, is not to revisit their physical considerations, which
Yazaki has already studied. Instead I intend to make explicit and confirm that the
idea of superposition of states did indeed play an important role in the calculation
of expectation values Klein and Nishina carried out.

Since 𝔇ଶ
଴ is a sum of bilinear terms such as 𝑢(𝔭ᇱ)𝛼𝑣(𝔭) ⋅𝑢(𝔭)𝛽𝑣(𝔭ᇱ), where

𝛼 and 𝛽 are certain matrices, Klein and Nishina had to calculate these terms. The
authors reduced all the terms to the calculation of 𝑢(𝔭ᇱ)𝑣(𝔭ᇱ) and 𝑢(𝔭ᇱ)𝜎𝑣(𝔭ᇱ).
For these terms, Klein and Nishina derived the following values:

̄𝑢(𝔭ᇱ)𝜎𝑣(𝔭ᇱ) = 0, (7.30)

𝑢(𝔭ᇱ)𝑣(𝔭ᇱ) = 𝑢∗(𝔭ᇱ)𝑣∗(𝔭ᇱ) = 2(2𝜋ℎ)ିଷ, (7.31)

where the overbar means average.
The factor of 2 in this equation is remarkable, especially because eq. 20 in

the Klein-Nishina paper (Klein and Y. Nishina 1929, 858) states:

𝑢(𝔭)𝑣(𝔭) = (2𝜋ℎ)ିଷ. (7.32)

How did they reach these values? This part of their calculation hinged on their
choice for the initial and final states of the electron.

For the initial state, it seems appropriate to choose spin up and down states
as two independent states. To explain this choice, it is necessary to explicitly fix
spinor and matrix elements. Klein and Nishina chose 𝜌ଷ and 𝜎ଷ to be diagonal.
Hence:

𝜌ଷ =
⎛
⎜⎜

⎝

−1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟

⎠

, 𝜎ଷ =
⎛
⎜⎜

⎝

1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

⎞
⎟⎟

⎠

. (7.33)

From the Dirac equation for free electrons, it follows that in the case of 𝔭 = 0,

𝑢(0)(1 + 𝜌ଷ) = 0, (1 + 𝜌ଷ)𝑣(0) = 0. (7.34)

Thus, one can choose two independent solutions, with either 𝑢ଵ, 𝑣ଵ or 𝑢ଶ, 𝑣ଶ
being nonzero. Hence, the solutions are:

17Yazaki’s articles are unfortunately not in English. For a brief English account of his articles, see
(Brown 2002).
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𝑢(𝔭) =
⎛
⎜⎜

⎝

𝑎ଵ𝑒௜ఋభ(𝔭)

0
0
0

⎞
⎟⎟

⎠

, 𝑣(𝔭) =
⎛
⎜⎜

⎝

𝑎ଵ𝑒ି௜ఋభ(𝔭)

0
0
0

⎞
⎟⎟

⎠

, (7.35)

and

𝑢(𝔭) =
⎛
⎜⎜

⎝

0
𝑎ଶ𝑒௜ఋమ(𝔭)

0
0

⎞
⎟⎟

⎠

, 𝑣(𝔭) =
⎛
⎜⎜

⎝

0
𝑎ଶ𝑒ି௜ఋమ(𝔭)

0
0

⎞
⎟⎟

⎠

, (7.36)

where 𝑎ଶଵ = 𝑎ଶଶ = (2𝜋ℎ)ିଷ, and 𝛿ଵ, 𝛿ଶ are phases that can be chosen freely.
For the final state, since the electron is not at rest, the equations are not

so simple. As Yazaki (1992) shows, they solved this by introducing a contact
transformation:

𝑆 = 𝛼 + 𝑖𝛽𝜌ଶ(𝜎𝔭), 𝑆ିଵ = 𝛼 − 𝑖𝛽𝜌ଶ(𝜎𝔭),
𝛼ଶ + 𝛽ଶ𝔭ଶ = 1,

(7.37)

where, 𝛼, 𝛽 are given by the following equations:

𝛼 = ඨ𝑚
∗ +𝑚
2𝑚∗ , 𝛽 = ඨ𝑚

∗ −𝑚
2𝑚∗𝔭ଶ . (7.38)

They define 𝑢∗(𝔭) and 𝑣∗(𝔭) by:

𝑢(𝔭) = 𝑢∗(𝔭)𝑆(𝔭), 𝑣(𝔭) = 𝑆ିଵ(𝔭)𝑣∗(𝔭). (7.39)

Then the Dirac equations take the same form as for 𝔭 = 0:

𝑢∗(1 + 𝜌ଷ) = 0, (1 + 𝜌ଷ)𝑣∗ = 0. (7.40)

In the case of the final state of the Compton effect, Klein and Nishina claim both
𝑢∗ଵ, 𝑣∗ଵ and 𝑢∗ଶ, 𝑣∗ଶ must be considered finite (Klein and Y. Nishina 1929, 864).
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Hence, it appears the wave functions for the final state have both components,
namely:

𝑢∗(𝔭ᇱ) =
⎛
⎜⎜

⎝

𝑎ଵ𝑒௜ఋభ(𝔭
ᇲ)

0
0
0

⎞
⎟⎟

⎠

+
⎛
⎜⎜

⎝

0
𝑎ଶ𝑒௜ఋమ(𝔭

ᇲ)

0
0

⎞
⎟⎟

⎠

,

𝑣∗(𝔭ᇱ) =
⎛
⎜⎜

⎝

𝑎ଵ𝑒ି௜ఋభ(𝔭
ᇲ)

0
0
0

⎞
⎟⎟

⎠

+
⎛
⎜⎜

⎝

0
𝑎ଶ𝑒ି௜ఋమ(𝔭

ᇲ)

0
0

⎞
⎟⎟

⎠

.

(7.41)

In other words, for the final state of the electron, they combined (or superposed)
the two independent solutions 𝑢∗, 𝑣∗ with variable phase factors. Thus, behind
the scenes, Nishina, with Klein, went back to his old friend from his electrical
engineering student years—the principle of superposition—to carry out his first
and most important work in quantum mechanics.

For the value of 𝑢(𝔭ᇱ)𝜎𝑣(𝔭ᇱ), Klein and Nishina employed physical con-
siderations and direct calculation. They claim the final state “should contain the
two independent solutions with equal strength,” the average of 𝑢(𝔭ᇱ)𝜎𝑣(𝔭ᇱ) over
phases must vanish (Klein and Y. Nishina 1929, 866). Hence the expectation
value of 𝜎, the magnetic moment of the electron, is zero. The same value can be
derived through straightforward calculation by plugging in the expression in eq.
(7.41), and averaging over 𝛿ଵ and 𝛿ଶ. As for 𝑢∗(𝔭ᇱ)𝑣∗(𝔭ᇱ), one can get 2(2𝜋ℎ)ଷ
by inserting the expression in eq. (7.41).

Klein and Nishina did not clearly show how they justified this procedure
for calculating a statistical average. This procedure of summing over phases
did not appear in the previous theory of the Compton effect, such as Gordon’s
(1926). Although Klein and Nishina did not state it explicitly, they probably took
into consideration that different phases give different directions of spin, not un-
like Steinmetz’s alternating current theory, where different imaginary numbers
give different directions of vectors in vector diagrams. Summation over phases
meant summation over the direction of the magnetic moment. At least for the
initial state, the physical meaning was then clear. As for the final state, the situa-
tion was somewhat different, because the physical meanings of 𝑢∗(𝔭) and 𝑣∗(𝔭)
were not transparent. They probably justified their assumptions by showing that

̄𝑢(𝔭ᇱ)𝜎𝑣(𝔭ᇱ) vanishes by direct calculation. Since they were considering unpo-
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larized light as the incoming radiation, the average of the magnetic moment in
the final state should also be zero.

Since summation over phases eliminates non-diagonal elements and sums
diagonal elements, this procedure can be considered equivalent to taking a trace.
Because the density matrix in this case is proportional to the unit matrix, this
procedure agrees with a quantum statistical calculation for a mixed state. A
mathematical theory about this procedure of quantum statistics had already been
presented by John von Neumann in 1927, see (von Neumann 1927). Klein and
Nishina were likely unaware of the relevance of Neumann’s paper but managed
to do a mathematically-equivalent calculation relying on physical considerations
(if they had noticed it, their calculation would have been much different; taking
a trace from the beginning would have made the calculation much shorter and
easier).

7.5 Conclusion

As I wrote at the beginning of this paper, I am not claiming any deterministic,
causal connections. It would be ridiculous to claim that Nishina worked on quan-
tum mechanics because he studied electrical engineering. Nor do I claim that
Nishina took a certain research style in quantum mechanics different from others
because of his electrical engineering background. What I claim is that quantum
mechanics, not only its experiments but also its theoretical research, might not
be as disconnected from other fields of investigation, such as engineering, as we
might assume. In terms of theoretical practices, there are some similarities be-
tween alternating current theory and quantum physics, at least in the way they
were experienced by a person like Nishina.

Therefore, the fact that Nishina was originally trained in electrical engi-
neering does not mean that Nishina started learning quantum mechanics “from
scratch.” Nishina’s engineering training probably prepared him for theoretical re-
search in quantum mechanics to some extent. At least in this limited sense, it
seems the institutional and pedagogical developments in engineering helped in-
troduce theoretical research in quantum mechanics into Japan.
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