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Chapter 5
Early Interactions of Quantum Statistics and
Quantum Mechanics
Daniela Monaldi

Two papers that inaugurated the quantum mechanics of multiparticle systems
were published in the second half of 1926. They were “Mehrkörperproblem und
Resonanz in der Quantenmechanik” by Werner Heisenberg and “On the Theory
of Quantum Mechanics” by Paul Dirac (Heisenberg 1926; Dirac 1926).1 These
works are commonly credited together for having laid the foundations of the inte-
gration of quantum mechanics and quantum statistics because they introduced the
quantum-mechanical expression of the symmetry of a system under exchanges of
equal particles. The quantum formalism of exchange symmetry is regarded as
having solved at once long-standing difficulties regarding the statistical proper-
ties of both equal particles and light quanta by clarifying and legitimizing the
previously foggy notion of indistinguishable particles. Despite apparent formal
similarities, however, there were significant differences between Heisenberg’s
and Dirac’s approaches to multiparticle systems. Furthermore, under the surface
of Heisenberg’s distrust of visualizable models and of Dirac’s ideal of abstract
theorizing, the two works relied on an interpretive model of particle systems that
differed from both earlier and later interpretations of quantum statistics, while
remaining surprisingly close to the corpuscular model of the older statistics of
James C. Maxwell and Ludwig Boltzmann. Dissonances of this kind are to be ex-
pected from two works produced in the early days of quantum mechanics, when
the theory was still under construction and questions of interpretation were be-
ginning to surface. One may recall that Max Born’s work on collisions, which
opened the way to the statistical interpretation of wave functions, also dates from
the summer of 1926. Wolfgang Pauli and Heisenberg formulated the principle of
indeterminacy in the following fall and winter. And only in September 1927 did
Niels Bohr set forth his principle of complementarity, supposedly providing con-
ceptual unity to the so-called Copenhagen interpretation of quantum mechanics

1Heisenberg’s paper was submitted and published in June 1926; Dirac’s paper was submitted on 26
August and published in October 1926.
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and solving the puzzle of wave-particle duality, under which the interpretation of
quantum statistics was filed (Jammer 1966).

While issues of interpretation in quantum mechanics have attracted much
historical and philosophical scholarship, the forging of its alliance with quantum
statistics remains underexamined. Recent historical analyses have uncovered a
plurality of voices under the unisonant narrative of the Copenhagen interpreta-
tion, while physical and philosophical work has once again brought to the fore-
front questions concerning the ontology of quantum mechanics and quantum field
theory that were never closed (Beller 1999; Bitbol 2007; Camilleri 2009). There-
fore, an investigation of the statistical connections of the early quantum mechan-
ics of multiparticle systems may contribute some clarification. In what follows, I
set the stage by recalling the birth of quantum statistics and its first interpretation;
then, I analyze Heisenberg’s and Dirac’s pioneering approaches to the integration
of quantum statistics and quantum mechanics, with the aim of uncovering the
presuppositions of their authors and their interpretations of the outcomes. The
purpose is to shed light on the early phase in the historical process of understand-
ing the statistical behavior of multiparticle systems and its connection with the
wave-particle duality.

5.1 The Birth of Quantum Statistics

When Heisenberg and Dirac took up the many-particle problem in the emerg-
ing framework of quantum mechanics, quantum statistics was itself less than two
years old. It had been born in the second half of 1924, when Albert Einstein
applied a statistical method that Satyendra Nath Bose had just worked out for
radiation to the ideal gas. This new theory, which we know as Bose-Einstein
statistics, was based on the combinatorial calculation of the entropy of an as-
sembly of “elementary entities”—light quanta or gas molecules—in a quantized
phase space. As Einstein explained in the first of his quantum gas papers, the
statistical-combinatorial method that Bose had adopted from Max Planck con-
sisted of dividing the phase space of an elementary entity into “cells” of size ℎଷ,
and defining the “microscopic state” of the assembly as the distribution of the
elementary entities over the cells. Every “macroscopic state” was then assigned
a quantity, 𝑊, equal to the number of different microscopic states by which the
macroscopic state could be thought to be realized. The quantity 𝑊 was intro-
duced by Planck in his adaptation of Boltzmann’s calculation of the equilibrium
distribution of the ideal gas to thermal radiation. It was used to calculate the
entropy, 𝑆, and the other thermodynamic functions through the Boltzmann prin-
ciple, 𝑆 = 𝑘 log𝑊. Einstein called it insistently “probability (in Planck’s sense)”
or “probability à la Planck,” evidently to stress that it was no probability in his
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sense (Einstein 1924, 261–262; 1925). There was nonetheless an essential dif-
ference between Bose’s calculation and the “quantum statistics” that this method
had hitherto produced in the hands of Planck and others. Einstein compared the
two cases in detail in the second of his quantum gas papers, labelling the for-
mer method “according to Bose” and the latter “according to the hypothesis of
statistical independence of the molecules.” In both cases, the entropy of a state
of the system was proportional to the logarithm of 𝑊, which Einstein character-
ized as the number of “possibilities of realization” of the state. Likewise, in both
cases, a “macroscopically defined state,” or energy distribution, was defined by
a set of numbers (𝑛ଵ, 𝑛ଶ, 𝑛ଷ, …) representing the numbers of elementary entities
in each “infinitesimal region” of energy, or “elementary region,” Δ𝐸. Finally,
within each elementary region, the molecules were to be regarded as distributed
among the cells of size ℎଷ in the quantized phase space of a single molecule, and
the 𝜈-th elementary region contained 𝑧ఔ = 2𝜋 ௏

௛య (2𝑚)
య
మ𝐸 భ

మΔ𝐸 cells (Einstein
1924, 262).2 Where the two methods differed was in their assumptions of what
the “possibilities of realization” of a macroscopic state were. Though not explic-
itly defined, these represented a generalization of the configurations of molecules
that Boltzmann had named “complexions,” and had to be the most specific states
of equal probability by which any other state, as for example an energy distribu-
tion, could be thought to be realized. Indeed, Einstein proceeded to quietly drop
the term “possibilities of realization” and to replace it with “microscopically de-
fined states,” while also indicating the term “complexions” in parenthesis. In the
old statistics, the microscopic states were defined by stating “in which cell each
molecule sits,” while in the new statistics they were defined by stating “how many
molecules are in each cell” (Einstein 1925, 5–6). This meant that in the old statis-
tics, one first counted in many different ways how the 𝑛ఔ molecules in the 𝜈-th
elementary region could be distributed among the 𝑧ఔ phase-space cells of that
region. The result was 𝑧ఔ௡ഌ . Then, one calculated the number of different ways
in which the distribution (𝑛ଵ, 𝑛ଶ, 𝑛ଷ, …) could be obtained from the 𝑛 molecules,
obtaining the factor ௡!

ஈ௡ഌ! . Finally, one had to multiply this factor by the product of
the 𝑧௡ഌఔ over all the regions,∏

ఔ
𝑧௡ഌఔ . In the statistics of Bose, the number of ways to

partition 𝑛ఔ particles into 𝑧ఔ cells was given instead by the factor, (௡ഌା௭ഌିଵ)!௡ഌ!(௭ഌିଵ)! , and
the number of complexions corresponding to the energy distribution was given
by the product of these factors over all the elementary regions.

The calculation described above was the original form of Einstein’s new
statistics. For the purpose of discussing the integration of quantum statistics

2Einstein assumed that “[f]or any given ౴ಶ
ಶ , however small,” one could always choose ೇ so large

that ೥ഌ would be “a large number.”
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with quantum mechanics, however, nothing will be lost if we consider a sim-
pler form, first introduced by Erwin Schrödinger in his examination of Einstein’s
quantum gas theory; in this form, the elementary regions of energy are chosen
to coincide with the quantum cells (𝑧ఔ = 1) (Schrödinger 1925). For the old
statistics, then, the number of complexions for a given energy distribution be-
comes 𝑛! /(𝑛ଵ! 𝑛ଶ! …), the factor that Boltzmann used, called “permutability” of
the distribution, and from which he derived the Maxwell-Boltzmann distribution.
For the new statistics, the number of complexions becomes equal to one. In the
language of quantum atomic theory, which Heisenberg and Dirac used in their
treatments of the many-body problem, the change from the Maxwell-Boltzmann
statistics to that of Bose and Einstein consisted of the reduction of the statistical
weight (Heisenberg’s term), or a priori probability (Dirac’s term), of a state from
Boltzmann’s permutability (different for each energy distribution) to one (equal
for all the energy distributions).

Einstein realized that Bose’s way of counting complexions violated an as-
sumption that had, until then, been basic to the statistical method, namely, the
statistical independence of the elementary entities. For this reason, he offered
Bose’s method as a new statistics alternative to the statistics of independent par-
ticles. He made this point very clearly, first in private correspondence and then
in the second quantum gas paper (Einstein 1925).3 In his understanding, the new
statistics expressed a mutual influence among the elementary entities, which was
“for the time being of an entirely mysterious kind” (Einstein 1925, 7). The lack
of statistical independence of the light quanta had already been analyzed, espe-
cially by Paul Ehrenfest, and Einstein theorized that it was responsible for the
wave properties of radiation. For the light quanta, then, the new statistics simply
expressed in new form something already known. Einstein surmised that the hy-
pothetical application of the same statistics to the molecules of an ideal gas was
justified by a “far reaching formal similarity between radiation and gas,” which
he believed to be “more than a mere analogy” (Einstein 1925, 3). He thus sug-
gested that Louis de Broglie’s theory, which attributed wave properties to material
corpuscles, might provide the appropriate theoretical framing of the similarity.

Every physicist who commented in print on the new statistics in the two
years after its publication adopted Einstein’s interpretation of it as a statistics
of non-independence. Schrödinger and Pascual Jordan, however, followed also
Einstein’s suggestion of a fundamental similarity between radiation and matter.
Schrödinger adopted de Broglie’s ideas and developed them into wave mechanics;
Jordan started a treatment of the radiation field that formalized the wave-particle
duality within the scheme of the new quantum mechanics (Darrigol 1986; 1992a).

3Einstein to Halpern, September 1924, Einstein Archives, Reel 12, Doc. 128; Einstein to
Schrödinger, 2 February 1925, Einstein Archives, Reel 22, Doc. 2.
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5.2 Heisenberg’s Many-body Problem and Quantum Resonance

The first to find a connection between the quantum mechanics of particles and
the new statistics was Heisenberg. Upon accepting the position of lecturer and
assistant to Niels Bohr at the Institute of Theoretical Physics in Copenhagen, in
April 1926, Heisenberg went to work on the problem of the helium atom. The
hypothesis of electron spin that George Uhlenbeck and Samuel Goudsmit put
forward in the fall of 1925 had raised hopes to find a common solution for the
helium problem and for an explanation of the Pauli Verbot, or “Pauli exclusion
rule,” the prohibition of equivalent orbits for atomic electrons postulated by Pauli
at the end of 1924. Heisenberg wrote to Pauli at the beginning of May:4

We have found a rather decisive argument that your exclusion of
equivalent orbits is connected with the singlet-triplet separation […].
Consider the energy written as a function of the transition proba-
bilities. Then a large difference results if one—at the energy of H
atoms—has transitions to 1S, or if, according to your ban, one puts
them equal to zero. That is, para- and ortho-[helium] do have dif-
ferent energies, independently of the energies between magnets [i.e.,
magnetic moments associated with spin].

Heisenberg’s “decisive argument” appeared in Zeitschrift für Physik at the end of
June. It was his first published response to wave mechanics, which Schrödinger
had just set forth, presenting it as formally equivalent but physically preferable
to matrix mechanics. Heisenberg had reacted positively to Schrödinger’s theory,
welcoming the formal connection of the two theoretical schemes, and hoping that
it might be of help in reaching a physical understanding of quantum mechanics.
As he wrote to Dirac:5

I see the real progress made by Schrödinger’s theory in this: that the
same mathematical equations can be interpreted as point mechan-
ics in a non-classical kinematics and as wave theory according to
Schröd[inger]. I always hope that the solution of the paradoxes in
the quantum theory later could be found on this way [sic].

In fact, Heisenberg saw an overthrow of the classical representation of motion
in space and time in quantum mechanics, hence a new kinematics, but had been
concerned from the onset about the question of how the new kinematics could be
understood (Camilleri 2009). Soon, however, he developed a hostility to the phys-
ical interpretation that Schrödinger proposed, namely, an open return to a physics

4Heisenberg to Pauli, 5 May 1926, quoted in (Mehra and Rechenberg 1987, 737).
5Heisenberg to Dirac, 26 May 1926, AHQP 59–2.



130 5. Quantum Statistics and Quantum Mechanics (D. Monaldi)

of continuous processes in classical space and time. Shortly before submitting
his article, Heisenberg wrote to Pauli: “The great achievement of Schrödinger’s
theory is the calculation of the matrix elements;” then he added: “The more I
ponder the physical part of Schrödinger’s theory, the more horrible I find it.”6 He
expressed the same view, in mitigated terms, in the opening of the paper. While
acknowledging the convenience of the wave-mechanical approach and its formal
connections with the matrix approach, he stressed the difficulties of a wave theory
of matter. He closed the introduction stating that, despite the rising of the matter-
radiation analogy, “one of the most important aspects of quantum mechanics”
was that it was “based upon a corpuscular conception of matter,” even though it
was not a description of corpuscles moving in ordinary space and time (Heisen-
berg 1926, 412). These words echoed the way in which Heisenberg, Born and
Jordan had presented matrix mechanics in November 1925. They had described
it as “a system of quantum-theoretical relations between observable quantities”
which could not be directly interpreted in “a geometrically visualizable way,” be-
cause in it the motion of electrons could not “be described in terms of the familiar
concepts of space and time” (Born, Heisenberg, and Jordan 1925, 558).

Heisenberg’s strategy for the helium atom was to extend quantum mechan-
ics to a system composed of two electrons coupled by a potential—the simplest
example of a many-body system that could model the helium atom—on the ba-
sis of an analogy with the classical effect of resonance between two coupled
oscillators. He started by noting that in absence of interaction, the energy of
the system was simply the sum of the energies of the two electrons and did not
change under the exchange of the two electrons. He represented the total energy
as 𝐻௡௠ = 𝐻௔

௡ + 𝐻௕
௠, where 𝐻௔

௡ and 𝐻௕
௠ represented the energies of the two

electrons, with a and b labelling the electrons, and 𝑛 and 𝑚 their single-electron
states. Correspondingly, he also had distinct states labelled nm and mn in the
matrix representing the interaction energy of the system. Being the electrons per-
fectly equal particles with identical energy states, the energies of the two states,
rather obviously, coincided,𝐻௡௠ = 𝐻௠௡. Heisenberg expressed this property by
characterizing the energy terms as “twofold” and then segued into the assertion
that the states of the system exhibited what he called “the degeneracy character-
istic of the resonance.” He made the same point graphically, representing the two
states separately in a diagram showing the energy levels. He also admitted, both
verbally and graphically, an exception to the twofoldness-degeneracy-resonance,
namely, the states in which both electrons had the same energy (fig. 5.1). Heisen-
berg did not use too many words to justify his choice to give representation to
both states, nm and mn (except for 𝑚 = 𝑛) and his identification of twofold-
ness, degeneracy, and resonance; yet, the choice was neither obvious nor casual,

6Heisenberg to Pauli, 8 June 1926, quoted in (Mehra and Rechenberg 1987, 740).
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and the identification all but trivial. As we shall see in the next section, Dirac
did pause to ponder how such states should be represented in the matrix form,
and made a different choice—ironically, invoking Heisenberg’s methodological
principle that the new quantum mechanics should only allow the calculation of
observable quantities (Dirac 1926, 666–667). Heisenberg’s priority in dealing
with the helium problem was, instead, the expediency of resonance:

In other words, resonance always occurs when the two systems are
not originally in the same state, for the exchange of the two systems
gives the same energy. Only in the case of equal energy of the two
particles the resonance (or the degeneracy) disappears. (Heisenberg
1926, 417)

In fact, if an interaction was present and acted as a perturbation on the station-
ary states of the non-interacting system, there resulted two corrections to the
total energy. Representing with 𝐻ଵ the interaction energy, in first approxima-
tion the corrections were 𝑊ଵ

௡௠ = 𝐻ଵ(𝑛𝑚, 𝑛𝑚) + 𝐻ଵ(𝑛𝑚,𝑚𝑛) and 𝑊ଵ
௠௡ =

𝐻ଵ(𝑛𝑚, 𝑛𝑚)−𝐻ଵ(𝑛𝑚,𝑚𝑛). Each of the twofold energy terms was therefore split
into two new values, while no splitting occurred for the terms in which 𝑚 = 𝑛.
It appears, therefore, that Heisenberg closely followed the analogy with the clas-
sical phenomenon of resonance, which was instrumental to the explication of the
helium spectrum. At the same time, he deployed the term “degeneracy” (“Ent-
artung”) from Bohr’s atomic theory, a term that carried a specific assignation of
statistical weights, or a priori probabilities. Bohr’s atomic theory incorporated the
rule that every stationary state of an atomic system had the same a priori probabil-
ity, with the exception of the states that were “degenerate,” that is, they could be
adiabatically transformed into two or more states of different quantum energies.
In such cases, Bohr stated that:

[T]he probability of a given state must be determined from the num-
ber of stationary states of some non-degenerate system which will
coincide in the given state, if the latter system is continuously trans-
formed into the degenerate system under consideration. (Bohr 1918,
26)

Bohr explicitly crafted his definition of degeneracy to correspond to the classical
statistical assumption that a priori probabilities were proportional to volumes in
phase space. Along the same lines, Heisenberg took the unperturbed states of
the two-electron system to be degenerate or non-degenerate according to whether
they were transformed into two new states or into a single one by the interaction.
This meant that the assignation of statistical weights was the same as that of any
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other application of statistical mechanics to quantum systems prior to Bose. Put
differently, Heisenberg’s formalism for non-interacting particles channeled ex-
actly the same corpuscular model as the Maxwell-Boltzmann statistics. As we
are about to see, Heisenberg was eager to connect his multiparticle quantum me-
chanics to the new statistics of Bose and Einstein. Nevertheless, his definition of
degeneracy for the non-perturbed states reveals that he was not seeking the con-
nection because he had come to a reexamination of the nature of particles in the
light of the new kinematics.

In accord with his application of Bohr’s rule, Heisenberg further asserted
that the degeneracy was “eliminated in the system perturbed by the interaction”
(Heisenberg 1926, 417). He also warned, however, that although he continued to
label the new states nm and mn, the indices no longer referred to the states of the
individual particles. He further warned that it no longer made “physical sense to
talk” about the motion of single electrons (Heisenberg 1926, 418, 423).

Thus, he arrived at what he regarded as the decisive result. Because of the
equality of the two electrons, the matrix representing the radiation emitted by the
system had to be symmetric under electron exchanges. This requirement entailed
that the new energy levels divided into two sets (which Heisenberg marked with
the symbols + and •, see fig. 5.1), such that the amplitudes of all the transitions
from the energy levels of one set to those of the other set were zero. No transition
would occur from one set to the other; as Heisenberg put it, the two sets could “in
no way combine with each other” (Heisenberg 1926, 418). Resonance produced,
therefore, an indeterminacy in the possible solutions of the problem. Either one
of the two sets of terms, as well as a mixture of the two, constituted a complete
solution, and the theory alone could not decide which choice was correct.

At this point, Heisenberg examined the problem through Schödinger’s for-
malism. Applying the relations between matrix elements and eigenfunctions, he
found that the eigenfunctions of the perturbed system were the two linear combi-
nations of single-electron eigenfunctions. Indicating with 𝜙௔௡ and 𝜙௕௠ the eigen-
functions of the two electrons, 𝑎 and 𝑏, in the unperturbed single-electron en-
ergy states of energies 𝐻௔

௡ and 𝐻௕
௠, the eigenfunctions of the whole system in the

perturbed case were ଵ
√ଶ
(𝜙௔௡𝜙௕௠ + 𝜙௔௠𝜙௕௡) and ଵ

√ଶ
(𝜙௔௡𝜙௕௠ − 𝜙௔௠𝜙௕௡) (Heisenberg

1926, 420).
Heisenberg was then able to show that the predicted phenomenon of quan-

tum resonance could reproduce, qualitatively and in order of magnitude, the spec-
trum of helium. The Coulomb repulsion between the two electrons of the helium
atom would cause a “large electrical resonance,” and the corresponding energy
separation between the two sets reproduced in order of magnitude the differences
between the spectra of ortho-helium and para-helium. If then the electrons were
regarded as “small magnetic spinning tops,” the large resonance would be per-
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Figure 5.1: Heisenberg’s diagrams illustrating the states of a system of two elec-
trons. (a) Without interaction, every energy value is twofold or de-
generate, except when the electrons are in the same single-electron
state. (b) With interaction, the degeneracy is broken, and the states
divide into two non-combining sets, indicated by + and •. Source:
(Heisenberg 1926, 417–418).
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turbed. On the one hand, weak transitions between the two sets would now be
permitted thanks to “the interaction between magnet and orbit.” However, each
stationary state would become fourfold (there would be four possible combina-
tions of the two spins), and a “finer exact resonance” would occur on account of
the interaction between spins, which would again produce a separation into two
non-combining sets (Heisenberg 1926, 421–422). Heisenberg then observed that
of the two theoretically possible sets of terms, only one agreed with experiment,
namely, the one in which there were no equivalent orbits and in which, there-
fore, the Pauli Verbot was satisfied. Although he could not find a reason why
only one of the two sets should be selected, he was at least able to offer a formal
representation of the empirical rule.

In the last section of the paper Heisenberg made the connection with Bose-
Einstein statistics. In a swoop of guesswork, he argued that if his results were
generalized to an arbitrary number of electrons, it then became possible to use the
indeterminacy of the stationary states and the Pauli rule to deduce the statistics
of the assembly. According to him, the selection of only one of the theoretically
possible solutions according to the now-formalized Pauli rule would result in a
“reduction of the statistical weights” of the states that corresponded precisely to
“the Bose-Einstein counting” (Heisenberg 1926, 422). He claimed that this for-
mulation of the new assignation of statistical weights surpassed Einstein’s, for it
not only prescribed the choice of one specific solution out of many, it also spec-
ified the right choice, because it demanded the one set that satisfied the Pauli
Verbot.

Heisenberg counted this outcome as a success. Even though he could not
justify the natural selection of a single solution, having found a formal scheme
that simultaneously reproduced the Pauli rule and the Bose-Einstein statistics was
nonetheless an important result, since it indicated that they had the same cause. He
recalled that an interaction was necessary among the particles for the quantum-
mechanical resonance to occur, but he did not care to clarify what this meant
for the molecules of the Bose-Einstein ideal gas. He also emphasized that the
theoretical success came at a cost: it no longer made “physical sense to talk of”
the motion of single electrons (Heisenberg 1926, 423). This startling restriction
went beyond the notion that the theory described individual corpuscles in non-
ordinary space and time. Heisenberg, however, defused its ontological potential
by asserting that it made no sense to speak of the motion of individual electrons
just as it made no sense to speak of any non-symmetrical function of the electrons,
because only symmetric functions represented observable quantities. Finally, he
returned to the wave interpretation to conclude that it could now be dismissed.
Not only did the corpuscular interpretation alone suffice to deal with multiparticle
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systems, it even afforded a smooth integration of quantum mechanics with the
statistical theory that had seemed to support the undulatory conception of matter.

Despite his assurance, in the statistical part of the argument, Heisenberg was
flying by the seat of his pants. Most blatantly, he did not recognize that the Bose-
Einstein statistics, in which there was no restriction on the number of particles al-
lowed in a state, was incompatible with the Pauli Verbot, which allowed no more
than one particle in each state. A few months earlier, Enrico Fermi had published
a new quantum statistics of the ideal gas that was explicitly based on the general-
ization of the Pauli rule (Fermi 1926, reprinted in: Amaldi et al. 1962, 181–185).
Fermi, a young theorist in Rome who was not yet a member of the quantum net-
work, had worked within the framework of the old quantum mechanics. Dirac
would shortly arrive at the same quantum statistics in his treatment of many-
particle systems in quantum mechanics. Heisenberg, who was evidently unaware
of Fermi’s work, confused the two quantum statistics, and strangely continued
to confuse them even after the publication of Dirac’s paper. This oversight was
not the only peculiarity of Heisenberg’s argument, however. In his reckless gen-
eralization from two to 𝑛 electrons, Heisenberg took the Bose-Einstein statistics
to amount to a “reduction of statistical weights from 𝑛! to 1” (Heisenberg 1926,
423). But the statistical weight assigned by the old statistics to a macroscopic
state was not 𝑛!. It was Boltzmann’s permutability, 𝑛! /𝑛ଵ! 𝑛ଶ! …, as we have
seen in the previous section. Next, Heisenberg assumed that every energy value
of the unperturbed 𝑛-particle system was 𝑛!-fold degenerate, even though he had
denied earlier that this was always the case. The states (1, 1) and (2, 2), for in-
stance, were non-degenerate in his scheme (fig. 5.1). Therefore, according to his
reasoning, the degeneracy factor should again have been the permutability, not
the number of particle permutations, 𝑛!. That replacement of the permutability
with the factorial of 𝑛 was a standard approximation in statistical calculations,
in which it was often possible to assume that the frequency of cases of parti-
cles of equal energies was negligible, may partly account for Heisenberg’s slip;
still, the replacement was indefensible in the case of an atomic system. Although
these twin inaccuracies neutralized one another as far as Heisenberg’s aim was
concerned, they had the unfortunate effect of masking the actual difference be-
tween the old and the new statistics. A simple reduction of statistical weights by
a common factor, such as Heisenberg implied, would have left the statistical dis-
tribution of macrostates unchanged. Furthermore, Heisenberg went on to claim
that quantum resonance caused, quite conveniently, a separation into precisely 𝑛!
non-combining sets of states. He was unable to prove the claim, and in less than
six months, Eugene Wigner dismantled it. Through a careful examination of a
system of three interacting particles, Wigner showed that the separation into non-
combining sets did occur, but the number of non-combining sets was only three.
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To handle the problem for higher values of 𝑛, one needed the mathematical the-
ory of groups, and the solution did not turn out to be 𝑛! (Wigner 1927a; 1927b).
Finally, Heisenberg oddly insisted that the reduction of statistical weights was
caused by “the choice of one quantum mechanical solution out of many possi-
ble solutions,” even though according to Bohr's rule the reduction was effected
simply by the removal of degeneracy (Heisenberg 1926, 425).

Why did Heisenberg get himself into this jumble? To recover the Bose-
Einstein statistics, it would have been sufficient to generalize Bohr’s rule by as-
suming that all the possible perturbed multiparticle states had the same statistical
weight. Dirac was to take this route, as we shall see. The reason for the unneces-
sary complication of Heisenberg’s argument may reside in the incompleteness of
his interpretation of the formalism, and in the ambiguity in which it left the on-
tological status of multiparticle states. Heisenberg was careful not to pronounce
himself too finely on ontology beyond his advocacy of the corpuscular interpreta-
tion and his rejection of classical kinematics. Nevertheless, his apparent fondness
of the number 𝑛! suggests that his heuristic resource for theory construction was
still the classical conception of an assembly of free particles. He regarded every
energy value of the free-particle system as degenerate because it was potentially
obtainable in multiple ways through exchanges of equal particles. For two par-
ticles, this classical notion accorded with Bohr’s definition of degeneracy, and
Heisenberg rashly assumed that the accord would persist for any number of parti-
cles. Since he considered every multiparticle state as degenerate, he assigned it a
statistical weight equal to 𝑛!, that is, the number of possible particle permutations,
easily forgetting the anomaly presented by particles of equal energy. But what
happened to the supposed degeneracy when an interaction deprived the particles
of their freedom? The self-imposed prohibition to talk of individual corpuscles
moving in ordinary space and time deprived Heisenberg of the possibility to inter-
rogate the classical corpuscular model, while it did not itself provide an answer.
In these circumstances, the formalism was mute. It is probably in order to resolve
the ambiguity that Heisenberg reached for a mechanism capable of suppressing
any potential degeneracy, and the Pauli-rule selection, albeit unjustified, seemed
to him suitable to this purpose.

That Heisenberg’s treatment of the many-body problem was informed by
the classical model of particle assemblies is also supported by the few explicit
remarks that he made concerning the interpretation of the formalism. From the
viewpoint of the corpuscular interpretation, the perturbed energies contained
terms corresponding to “transitions in which the electrons exchange[d] place”
(Heisenberg 1926, 417). Therefore, Heisenberg explained that in each perturbed
state the electrons had “the same motion (in different phases)” (Heisenberg
1926, 418). He regarded this effect as the analog of classical resonance between
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coupled oscillators. While he declared that in presence of an interaction it no
longer made “physical sense to talk of” the motion of single electrons, he also
advised that if you wanted to form a picture of the motions, you could imagine
the electrons to “exchange place periodically in a continuous way” (Heisenberg
1926, 421 and 423).7

5.3 Dirac’s “On the Theory of Quantum Mechanics”

The second treatment of many-particles systems in quantum mechanics was given
shortly thereafter by Dirac in a paper titled “On the Theory of Quantum Me-
chanics” (Dirac 1926). As for Heisenberg, this was also Dirac’s first published
response to Schrödinger’s theory. He had corresponded with Heisenberg while
completing his PhD thesis in Cambridge in the spring of 1926. Many years later,
he wrote in his recollections that he did the work on many-particle systems af-
ter Heisenberg convinced him of the usefulness of wave mechanics. Dirac felt
“at first a bit hostile” to this theory because it seemed to him that it represented
a regress to “the pre-Heisenberg stage.” In a non-extant letter to Heisenberg, he
criticized Schrödinger because “the wave theory of matter must be inconsistent
just like the wave theory of light” (Dirac 1977, 131–132). Heisenberg agreed
with this criticism but nonetheless saw Schrödinger’s theory as progress, as we
have seen. Thanks to Heisenberg’s detailed explanation of the relation between
the two formal schemes, Dirac could see that wave mechanics “would not require
us to unlearn anything that we had learned from matrix mechanics” but rather
“supplemented the matrix mechanics and provided very powerful mathematical
developments which fitted perfectly with the ideas of matrix mechanics” (Dirac
1977, 133).

In Dirac’s retrospective account, it was the study of Schrödinger’s formal-
ism that suggested to him the possibility of symmetric and antisymmetric wave
functions for a system of similar particles. These “symmetry questions,” in turn,
“brought in the possibility of new laws of Nature” (Dirac 1977, 133). But the
inspiration to explore the symmetry of the wave functions might not have been
as purely formalistic as it appeared to Dirac in hindsight. In fact, Dirac knew that
Heisenberg was working on the helium atom, because Heisenberg had written to
him of his idea that the explanation of the helium spectrum was “a resonance ef-
fect of a typical quantum mechanical nature.”8 Moreover, in an “added in proof”
footnote in his paper, Dirac wrote: “Prof. Born has informed me that Heisenberg
has independently obtained results equivalent to these” (Dirac 1926, 670). Dirac

7See (Carson 1996) for an analysis of Heisenberg’s conception of energy exchange and its offspring,
the “peculiar notion of exchange forces.”

8Heisenberg to Dirac, 26 May 1926, AHQP 59–2.
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probably met Born in late July, when the latter was in Cambridge to give a talk
at the Kapitza Club (Kragh 1990, 321, note 68; Darrigol 1992b). Therefore, he
knew about Born’s thoughts on the superposition of wave functions, and it is also
likely that he learned about Heisenberg’s results before submitting his paper in
late August. Nevertheless, Dirac proceeded differently from Heisenberg and he
also reached significantly different results.

Instead of confronting Schrödinger’s undulatory interpretation, Dirac set out
to reformulate Schrödinger’s formal apparatus in general terms according to his
own mathematical approach. He deduced the expression of the general solution
of a quantum-mechanical problem as a linear expansion with arbitrary constants
in “a set of independent solutions,” which he called eigenfunctions (Dirac 1926,
664). This formal milestone enabled him to develop a quantum-mechanical treat-
ment of multiparticle systems and to reach three lasting results. He arrived at the
symmetry and antisymmetry of the wave functions, formulated the statistics that
we now know as Fermi-Dirac statistics, and derived a calculation of Einstein’s
coefficients of absorption and stimulated emission. While Heisenberg welcomed
the wave theory because it showed that the mathematical apparatus could be in-
terpreted in two ways, Dirac adopted the wave formalism as an enhanced mathe-
matical apparatus from which it was possible to calculate the matrices of the older
formulation. He believed that questions of interpretation should be broached only
after a general formal scheme was developed as abstractly as possible (Darrigol
1992b). Nonetheless, since he did need an interpretive model to extend the for-
malism to a new kind of physical system, he openly relied on the interpretation
of the matrices in terms of particles and quantum transitions, simply sidestepping
the wave aspects of the theory.

As Heisenberg, Dirac adopted “an atom with two electrons” as the simplest
multiparticle system. In his atom, however, all interactions between electrons
could be neglected. He did not resort to the analogy with the classical phe-
nomenon of resonance as a theoretical tool, but used only the symmetry of the
two-electron system supplemented by the methodological principle for which he
credited Heisenberg:

[Heisenberg’s matrix mechanics] enables one to calculate just those
quantities that are of physical importance, and gives no informa-
tion about quantities such as orbital frequencies that one can never
hope to measure experimentally. We should expect this very satisfac-
tory characteristic to persist in all future developments of the theory.
(Dirac 1926, 667)

Dirac indicated with (𝑚𝑛) “the state of the atom in which one electron is in an
orbit labelled 𝑚 and the other in the orbit 𝑛.” He then asked the question that
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Heisenberg had not considered worth asking. Were the “physically indistinguish-
able” states (𝑚𝑛) and (𝑛𝑚) to be counted as distinct or as identical? This ques-
tion was inconsequential in classical mechanics, but in the matrix formalism, it
implied a choice between two different matrix representations. In one, the matrix
elements corresponding to the transitions (𝑚𝑛) → (𝑚ᇱ𝑛ᇱ) and (𝑚𝑛) → (𝑛ᇱ𝑚ᇱ)
would be represented by two separate matrix elements, in the other they would
be represented by the same element. In principle, Dirac could have relied on
the traditional statistics of particles to answer the question; in that case, the an-
swer would have been that the two states were distinct except when 𝑚 = 𝑛. In
the previous section, we saw that Heisenberg had taken this course in his treat-
ment of the helium atom. He had simply adopted the first representation and had
applied symmetry considerations only to the values of the matrix elements repre-
senting the radiation emitted and absorbed by the system of interacting particles,
thereby deducing the impossibility of transitions between two groups of terms.
Dirac, who possibly had learned from Born of Heisenberg’s linkage of quantum
mechanics and Bose-Einstein statistics, instead chose to ignore the prescription
of the old statistics. He asserted that the two transitions, (𝑚𝑛) → (𝑚ᇱ𝑛ᇱ) and
(𝑚𝑛) → (𝑛ᇱ𝑚ᇱ), were “physically indistinguishable” and that “only the sum of
the intensities for the two together could be determined experimentally” (Dirac
1926, 667). From this proposition he drew the answer:

Hence, in order to keep the essential characteristic of the theory that
it shall enable one to calculate only observable quantities, one must
adopt the second alternative that (𝑚𝑛) and (𝑛𝑚) count as only one
state. (Dirac 1926, 667)

Having so fixed the matrix formalism, Dirac applied his formula for the general
solution of the two-particle model. He formed the eigenfunctions of the whole
system as linear combinations of products of the eigenfunctions of the single elec-
trons; then, he imposed the condition that they correspond to the matrices. This
condition could be satisfied only by combinations that were symmetrical or anti-
symmetrical under exchange of the electrons. Either one of these two possibilities
gave “a complete solution of the problem” and quantum mechanics did not dictate
which was the correct one (Dirac 1926, 669). The choice, Dirac stated, was to be
made by appealing to Pauli’s exclusion principle:

An antisymmetrical eigenfunction vanishes identically when two of
the electrons are in the same orbit. This means that in the solution
of the problem with antisymmetrical eigenfunctions there can be no
stationary states with two or more electrons in the same orbit, which
is just Pauli’s exclusion principle. (Dirac 1926, 669–670)
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The symmetrical solution, however, could not be correct for “the problem of elec-
trons in an atom” because it allowed any number of electrons in the same orbit
(Dirac 1926, 670). These results could be straightforwardly extended to any sys-
tem composed of similar particles, in particular, to an assembly of molecules.
Dirac thus applied them to the ideal gas. He obtained the eigenfunction of the
assembly by multiplying the single-molecule eigenfunctions and choosing either
the symmetrical or the antisymmetrical linear combinations. At this point, he
turned to statistical considerations. He implicitly made the assumption that the
new states, represented by symmetrical and antisymmetrical wavefunctions, rep-
resented the energy distributions, or macrostates, of statistics. Then, he explicitly
adopted as a “new assumption” the simplest extension of Bohr’s rule, namely, that
“all the stationary states of the assembly (each represented by one eigenfunction)
have the same a priori probability” (Dirac 1926, 671). In the case of symmetrical
eigenfunctions, this rule corresponded to the Bose-Einstein statistics. In the case
of the antisymmetrical eigenfunctions, whereby the number of molecules associ-
ated with each single-particle eigenfunction could only be 0 or 1, it led to the new
statistics that is now known as the Fermi-Dirac statistics. Dirac concluded:

The solution with symmetrical eigenfunctions must be the correct
one when applied to light quanta, since it is known that the Einstein-
Bose statistical mechanics leads to Planck’s law of black-body radi-
ation. The solution with antisymmetrical eigenfunctions, though, is
probably the correct one for gas molecules, since it is known to be the
correct one for electrons in an atom, and one would expect molecules
to resemble electrons more closely than light quanta. (Dirac 1926,
672)

Despite having just derived the two quantum statistics from the same set of
assumptions (with the difference of the Pauli principle), Dirac separated them
starkly in their applicability. His integration of quantum statistics and quantum
mechanics was thus sealed with an uncompromising rejection of Einstein’s
analogy between light quanta and material corpuscles. Dirac, in fact, had already
rejected the matter-radiation analogy two years earlier:

For the discussion of equilibrium problems, quanta of radiation can-
not be regarded as very small particles moving with very nearly the
speed of light. There are two important points in which this pic-
ture is inadequate. In the first place the small particles could not
(according to ordinary statistical theory) have any stimulating effect
on processes by which they are emitted, and they should therefore
be distributed in momentum according to Maxwell’s law, which is
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the same as being distributed in energy (or frequency) according to
Wien’s radiation law. Secondly the concentration of quanta in ther-
modynamical equilibrium is not arbitrary, as is the case with all kinds
of material particles, but is a definite function of temperature. (Dirac
1924, 594)

Moreover, when he first studied Einstein’s quantum gas theory, he followed Ein-
stein’s interpretation of Bose’s method as a statistics of non-independent entities.
If the gas molecules were statistically distributed as light quanta, then they would
have to be “not distributed independently from one another,” and hence there
would have to be “some kind of interaction between them” (Dirac 1925, 7). For
Dirac, therefore, the analogy of ideal gas and heat radiation was invalid because
non-interacting molecules had to be statistically independent, while light quanta
were known not to be so. His categorical separation of the domains of appli-
cability of the two quantum statistics preempted the possibility to interpret his
new statistics in the same way as the statistics of Einstein and Bose, that is, as a
statistics of non-independence.

A retrospective comparison with the modern understanding of quantum
statistics brings into relief what Dirac’s argument was not about. He did not
argue that his formal-observational symmetry signified any modification of the
traditional model of particles. More specifically, he did not propose that in the
new mechanics, the particles were any more indistinguishable than they already
were in classical mechanics. He did not suggest that the particles lost their
identity. He flatly ignored the possibility that they had wave-like properties.
Finally, he did not even extend the interpretation of the Bose-Einstein statistics as
a statistics of non-independent objects to his new statistics. The only implication
that he drew from his implementation of the formal-observational symmetry
was a confirmation of the fundamental difference between material particles
(electrons, atoms and molecules) and light quanta.

Dirac’s integration of quantum statistics and quantum mechanics rested
squarely on the corpuscular interpretation of the matrix formalism, supple-
mented by a formal restriction on the solutions of the wave equation. Dirac
justified the formal restriction in terms of observational symmetry. Planck had
already invoked the symmetry of a gas under exchanges of equal molecules in
the quantum-statistical theory of gas prior to Bose. He and others used it to
rationalize the subtraction of a term depending on the number of particles from
the expression of the entropy (Darrigol 1991; Desalvo 1992; Monaldi 2009).
Schrödinger had compared the entropy formula obtained in this way with the for-
mula derived by Einstein, and he had concluded that the correct implementation
of Planck’s exchange symmetry was the statistics of non-independence proposed
by Einstein. He then floated the suggestion that the proper way to understand this
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odd new statistics might be to regard the whole gas as a system endowed with
a “symmetry number” equal to 𝑛! rather than as an assembly of 𝑛 independent
individual molecules (Schrödinger 1925, 438). Therefore, a viable, if still
sketchy, model based on exchange symmetry was available to Dirac to support
his symmetry requirement. Nonetheless, he was clear and explicit that for him
the state (𝑚𝑛) was not an unspecific state of the whole system endowed with
symmetry, but a state “in which one electron is in an orbit labelled 𝑚, and the
other in the orbit 𝑛” (Dirac 1926, 667). In other words, Dirac remained faithful
to the individuality of particles typical of the corpuscular interpretation of matrix
mechanics, skirting the implications of his new statistics for the independence of
electrons and gas molecules.

The fact that Dirac disregarded the undulatory interpretation of the wave
function and the consequences of antisymmetry for the independence of material
particles does not mean that he refrained completely from any interpretation of
the general solution of the wave equation. He did put forward an interpretation in
the last section of the paper, in which he outlined a perturbation theory and fruit-
fully put it to use. He wrote the wave equation of “an atomic system subjected to
a perturbation from outside (e.g., an incident electromagnetic field),” and showed
that the general solution could be written as Ψ = Σ௡𝑎௡Ψ௡, where the Ψ௡ were
the wave functions associated with the stationary states of the unperturbed atom,
and the 𝑎௡ coefficients depending on time. He thus deftly switched interpretive
models. He proceeded to consider the general solution as no longer representing
an atom but an assembly of atoms, and to assume that the square modulus of the
coefficient 𝑎௡ represented “the number of atoms in the 𝑛th state” (Dirac 1926,
646–647). The general solution now was a new theoretical representation of a
multiparticle system that avoided any representation of individual particles and
therefore bypassed, for the time being, the question of whether two states differing
only by particle exchange should be counted as a distinct or identical. Determin-
ing the time evolution of the 𝑎௡ under the effect of the perturbation, Dirac was
then able to derive the coefficients of absorption and stimulated emission of Ein-
stein’s theory of radiation, under the restricting condition that the initial phases
of the atoms could be averaged. In this part of the paper, Dirac made no use of
the results of the previous section. Neither did he subject the assembly of atoms
to the exclusion principle that he had just posited to apply to gas molecules, nor
did he suppose that the atoms followed the Einstein-Bose statistics.

Dirac returned to the difference between electrons and light quanta and the
emission and absorption of radiation half a year later, after having spent several
months at Bohr’s institute in Copenhagen formulating the general transformation
theory and a general statistical interpretation of it (Dirac 1977; Kragh 1990; Dar-
rigol 1992b). As a result of that work, he was able to forge a link between his two
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representations of multiparticle systems for the case of light quanta, and thereby
launched quantum electrodynamics. He first provided a quantum-mechanical the-
ory of the radiation field using the energies and phases of the Fourier components
as dynamical variables. Then, adapting his earlier tentative interpretation of the
general solution of the wave equation, and helping himself with some nimble as-
sumptions, he built a formal equivalence between the Hamiltonian of the field
and the Hamiltonian of an assembly of equal particles (Darrigol 1986; Schweber
1994). He stressed, however, that the equivalence worked only if the particles
obeyed the Bose-Einstein statistics, and this meant that it could only work for
light quanta. Although Dirac now enlarged the term “particles” to include these
entities, it was clear that for him they still did not belong in the same category
as electrons. He especially warned that the classical “light wave” did not coin-
cide with the “de Broglie or Schrödinger wave associated with the light quanta.”
Therefore, even though there was a “de Broglie or Schrödinger wave” associ-
ated with each electron, there could not be a corresponding field description for
electrons with them (Dirac 1927, 241).

In addition, Dirac now had at his disposal the statistical interpretation of
the theory. He was therefore able to reaffirm the connection between symmetric
wave functions and Bose-Einstein statistics without the need for an additional as-
sumption concerning the equal probabilities of the stationary states. He pointed
out that the wave function of an assembly of particles could now be interpreted
“in the usual manner.” By this, he meant that the wave function no longer gave
“merely the probable number” of particles in any state, but gave also “the prob-
ability of any given distribution” of the particles over the various states. But the
probability calculated in this way did not agree with the probability calculated
“from elementary considerations” for an assembly of independent particles. It
agreed with the probability of an assembly of particles that obeyed the Bose-
Einstein statistics, thus confirming the latter as a statistics of non-independence.
In spite of the generality of the statistical interpretation, Dirac neglected to extend
the same conclusion to the Fermi-Dirac statistics (Dirac 1927, 251). For a time,
he continued to regard the two statistics as revealing two fundamentally different
ontologies. As he recalled in his memoir, at first he disliked Jordan and Wigner’s
extension of his field quantization technique to particles obeying the Fermi-Dirac
statistics. His objection was that in the case of Bose-Einstein statistics, one could
form “a definite picture underlying the basic equations, namely the picture that
the theory could be applied to an assembly of oscillators.” No corresponding pic-
ture was available for the Fermi-Dirac statistics, and Dirac felt that this “was a
serious drawback” (Dirac 1977, 140).
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5.4 Conclusion

Despite their similarities, the works of Heisenberg and Dirac on the quantum me-
chanics of multiparticle systems present significant differences. Heisenberg was
driven by the need to solve the problem of the helium atom and by the antagonism
between his corpuscular interpretation and Schrödinger’s undulatory interpreta-
tion of quantum mechanics. He relied on the phenomenon of quantum resonance,
for which an interaction among the particles was necessary. Although he dis-
carded classical kinematics, he took for granted that two states of free particles
that differed only by particle exchange should be represented as distinct, except
for the cases in which the particles had the same energy. He mistook the Bose-
Einstein statistics for a statistics compatible with Pauli’s exclusion principle, and
he saw the transition from the old to the new statistics as the effect of a splitting
of the energy states caused by resonance plus the natural selection of the single
set of states that verified the exclusion principle. Dirac, in contrast, sidestepped
the wave model and was mainly motivated by his mathematical reformulation of
the wave formalism. Neglecting all interactions among the particles, he relied
mainly on the symmetry of a system of equal particles and on the metatheoreti-
cal precondition that the theory yield only observable quantities. On this basis,
contrary to Heisenberg, he concluded that two states differing only by particle ex-
change should be represented as a single state. This led him to the requirement of
either symmetrical or antisymmetrical stationary states. He could then relate the
symmetrical states to the Bose-Einstein statistics, and the antisymmetrical states
to the exclusion principle and to the Fermi-Dirac statistics. Unlike Heisenberg,
Dirac drew a categorical distinction between material corpuscles, all of which in
his view followed the Fermi-Dirac statistics, and light quanta, which followed
instead the Bose-Einstein statistics.

The comparison also brings to light a deeper commonality. Although these
two papers played a prominent role in the interaction of quantum statistics and
wave-particle duality, neither of them was produced on the basis of a revision
of the traditional concept of particles. On the contrary, they both reveal a firm
reliance on the corpuscular interpretive model, which continued to dominate the
theoretical imagination of the two theorists, notwithstanding their overthrow of
the classical representation of motion and their formalistic stances. Heisenberg’s
traditional assignation of statistical weights within the context of quantum me-
chanics and Dirac’s drastic separation of the two quantum statistics can be seen
as symptomatic of a remarkable theoretical resilience of the corpuscular model.
More specifically, they point to the relative autonomy and persistence across the-
ory changes of two basic characteristics of the concept of individual particles,
their perfect similarity and their mutual statistical independence.
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Abbreviations and Archives

AHQP Archive for History of Quantum Physics.
American Philosophical Society, Philadelphia

Einstein Archives Hebrew University of Jerusalem
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