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Chapter 10
Tsung-Sui Chang’s Contribution to the Quantization
of Constrained Hamiltonian Systems
Xiaodong Yin, Zhongyuan Zhu, and Donald C. Salisbury

The quantization of constrained systems is one of the cornerstones of modern el-
ementary dynamical theories. Important fundamental physical theories, such as
quantum electrodynamics, quantum chromodynamics, electro-weak unified the-
ory and string theories make use of it. The most widely used, currently canonical
formulation for the quantization of constrained Hamiltonian systems was pro-
posed by Paul Dirac in 1950 (Dirac 1950; 1951; 1964), and independently by Pe-
ter Bergmann and his collaborators (Bergmann and Brunings 1949; Bergmann,
Penfield, et al. 1950; Anderson and Bergmann 1951). Later, in 1967, Ludvig
Fadeev and Victor Popov made important progress in the path-integral quantiza-
tion of the Yang-Mills field (Fadeev and Popov 1967).

In this paper, we emphasize the contribution of a Chinese theoretical physi-
cist, Professor Tsung-Sui Chang, to this topic. In 1946, Chang pointed out that
the previous canonical formulations of constrained systems could not be applied
to quantum theory because they did not provide a method for dealing with one of
the key features of the analogous classical theories—the appearance of undeter-
mined multipliers. Chang worked out a feasible quantization procedure for such
systems.

In the following section, we present a summary of Chang’s education, train-
ing, and professional development from the 1930s to his death in 1969. In sub-
sequent sections, we outline theoretical developments in the field leading up to
Chang’s own advances.

10.1 Biographical Overview

Chang was born in Hangzhou, Zhejiang Province, on 12 July 1915. He studied
physics at Yenching University in 1930, then in 1931 he joined the Physics De-
partment of Tsinghua University, headed by Wu Youxun. It was one of the most
prestigious universities in China. In 1934, Chang began a masters degree pro-
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gram under Wu’s supervision. Wu recommended that he continue his training at
Cambridge University.

In August of 1936, Chang entered the Mathematics Department of Cam-
bridge University, supported by the Boxer Indemnity. He studied statistical phys-
ics as a doctoral student under Ralph Howard Fowler. Chang completed several
important works on cooperative phenomena (solid solution, adsorption). The
well-known text “Statistical Thermodynamics” by Fowler and Edward Guggen-
heim (1939) includes a section “The Combinatory Formulae of Chang.”

After receiving his doctorate at Cambridge in 1938, Chang decided to extend
his research field beyond statistical physics to quantum field theory. In 1938,
Fowler endorsed Chang’s application to Bohr:1

I think I can whole-heartedly recommend him to you. He has done
very well in his two years in Cambridge showing very considerable
initiative and skill in developing the formal consequences such as
order and disorder in alloys. I think you would find him very pleasant
to deal with, and thoroughly industrious and able.

In 1939, Chang went to the Theoretical Physics Institute at the University of
Copenhagen as a postdoctoral fellow and commenced his research on quantum
field theory. His academic career began in earnest with stays at different locations
in Europe, including: Copenhagen (September 1938 to February 1939), Zurich
(February to June 1939), and Paris (June to October 1939). His acquaintances
included Wolfgang Pauli, Niels Bohr and Aage Bohr. In Copenhagen, Chang
lived in Bohr’s home and established a very good relationship with Bohr’s family.
He completed two articles, “The Azimuthal Dependence of Processes Involving
Mesons” (Chang 1940) was published in 1940, then another article on the nature
of pseudo-scalar mesons. The latter publication was delayed until 1942 due to
Chang’s 1939 return to China and wartime communication difficulties.

Once back in China, Chang became the youngest professor of physics at
the National Central University in Chongqing. For the next six years, during the
Sino-Japanese War, Chang continued his research on statistical physics and quan-
tum field theory, including the quantization of constrained systems. He published
about ten articles during the difficult war period. Meanwhile, he was eager to pur-
sue an international academic exchange. Chang’s hope was fulfilled at the end
of 1945 when he had the opportunity to return to Cambridge, thanks to Joseph
Needham, who was the head of the Sino-British Science Cooperation Bureau in
China, and Dirac. The Bureau provided information and aid for institutions and
universities in China in wartime by sending papers to Western journals, offer-
ing scientific instruments and sending Chinese scholars to the United Kingdom.

1Correspondence by Fowler to Bohr on 8 June 1938, Niels Bohr Archive.
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During 1944–1946, the Sino-British Science Cooperation Bureau assisted eight
Chinese professors in going abroad, including Chang.

In addition to his connection to Bohr, Chang had a close relationship with
Dirac, one of Fowler’s previous students. Dirac had already become a well-known
professor during Chang’s first visit to Cambridge. Dirac’s research style served as
a model for Chang. It was under Dirac’s influence that Chang undertook the study
of quantum field theory in 1939. Further, Dirac recommended that Chang teach
a Cambridge course on quantum field theory,2 and they had many discussions on
this and other topics.

Chang’s first two papers on constrained systems published in Britain were
communicated by Dirac, and in the third paper, published in 1947, he thanked
Dirac for his interest and discussions.

In the autumn of 1947, Dirac went to the Princeton Institute for Advanced
Studies for a short-term visit. He suggested that Chang join him there. Chang
spent six months with Dirac in New Jersey. He was then invited to work at the
Carnegie Institute of Technology in Pittsburgh, Pennsylvania, for five months.

In the autumn of 1949, Chang left the United States and returned again to
China. He successively became a professor in the Physics Department of Peking
University, Beijing Normal University and the Institute of Mathematics of the
Chinese Academy of Sciences. He also became an academician of the Chinese
Academy of Sciences in 1957. He is recognized as one of the founders of quantum
field research in China. Despite his successes, he suffered during the Cultural
Revolution period and committed suicide on 30 June 1969 at 54 years of age.

10.2 Studies on Constrained Hamiltonian Systems before Chang’s
Work

10.2.1 Initial Studies

To better understand Chang’s contributions, we now turn to initial studies of con-
strained systems. The challenge of quantizing a classical constrained dynami-
cal model was present at the birth of quantum field theory. Classical electro-
magnetism is such a theory, so efforts to describe the quantum interaction of the
field with charged particles needed to address the problem of constraints directly.
Historically, the first such successful theory, with full quantum electromagnetic
interaction, was introduced by Dirac in 1927 (Dirac 1927). With regard to the
electromagnetic field itself, Dirac followed a method advanced by Pascual Jor-
dan in 1926 in a joint publication with Born and Heisenberg (Born, Jordan, and

2Cambridge University Reporter, Reporter issues for the academic year 1936–1937, Vol. 67, 682;
1937–1938, Vol. 68, 633.
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Figure 10.1: Tsung-Sui Chang, 1915–1969, Source: Prof. Yi Ci Chang.

Heisenberg 1926). The basic method is to decompose the radiation field into har-
monic oscillators, so the quantization of the electromagnetic field was reduced
to the quantization of these oscillators. The Dirac scheme dealt exclusively with
transverse components of the field and was therefore not obviously relativistically
covariant. Subsequently, in 1929, Heisenberg and Pauli established a canonical
quantization procedure for general quantum fields (Heisenberg and Pauli 1929;
1930). However, when applying their method to the electromagnetic field, they
encountered a stubborn difficulty that was eventually overcome by Heisenberg:
the classical momentum conjugate to the scalar potential of electromagnetic fields
vanishes identically. This means that the related canonical degrees of freedom
were not independent. The canonical variables were subject to constraints. The
immediate consequence was the contradictory conclusion that the commutator of
this vanishing momentum with the scalar potential would not vanish. Thus, a
procedure was needed to avoid this contradiction.

10.2.2 Earlier Approaches to Constrained Systems by Rosenfeld and Dirac

Obvious problems existed in early approaches to the quantization of the elec-
tromagnetic field.3 The first Heisenberg-Pauli method added a new term to the

3See (Salisbury 2009a) for a detailed analysis.
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Lagrange function, multiplied by a small parameter 𝜖. This had the effect that
the momentum no longer vanished. However, the 𝜖 term destroyed the manifest
gauge invariance of the Lagrangian. The second Heisenberg-Pauli method set
the scalar potential 𝐴 equal to zero, thus destroying manifest Lorentz covari-
ance. Gauss’s law was then imposed as an initial condition on quantum states. In
this same paper, they showed that a method that had—in the meantime—been put
forth by Fermi was equivalent to adding a Lorenz gauge-fixing term to the La-
grangian, and this gauge condition also needed to be imposed as an initial quantum
condition (Fermi 1929; Heisenberg and Pauli 1930).

Pauli invited the young Rosenfeld to join him in Zurich in 1929 to establish
a firmer theoretical foundation for the methods that he, Heisenberg and Fermi had
employed in their treatment of quantum electromagnetic field theory. Rosenfeld
set himself the task of formulating a Hamiltonian procedure for dealing with local
gauge symmetries in the two fundamental interactions that were known at the
time, electromagnetism and Einstein’s curved space-time gravitation. From the
start he focused on the problem of implementing the full gauge symmetry group
as a canonical transformation group acting on the phase space field variables. He
made enormous progress in this effort, although his results were largely unknown
(or in the case of Dirac, perhaps forgotten) by subsequent researchers. There is
no indication that Chang was acquainted with Rosenfeld’s work, although we do
know that Dirac was aware of it in 1932 (Salisbury 2009a).

Rosenfeld showed that, as a consequence of local Lagrangian symmetries,
identities arise that relate the canonical momenta and configuration variables
(when the former are understood as functions of the configuration variables and
their time derivatives). Following Rosenfeld, we represent the ensuing constrain-
ing relations as 𝐹(𝑝, 𝑞) = 0, where the index 𝑟 ranges over the total number
of such so-called primary constraints. It followed that the time development for
given initial conditions was not unique. Furthermore, Rosenfeld showed that this
time development could be represented in first-order Hamiltonian form, with a
Hamiltonian

𝐻 = 𝐻(𝑝, 𝑞) + 𝜆𝐹(𝑝, 𝑞), (10.1)

where the 𝜆 are arbitrary space-time functions.4 The Hamilton equations are
then

𝑑𝑞ఈ
𝑑𝑡 = 𝜕𝐻

𝜕𝑝ఈ
+ 𝜆 𝜕𝐹𝜕𝑝ఈ

(10.2)

4We assume here for the sake of simplicity that the number of physical variables  is finite. The
extension to field theory is straightforward.
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and

𝑑𝑝ఈ
𝑑𝑡 = −𝜕𝐻

𝜕𝑞ఈ − 𝜆 𝜕𝐹𝜕𝑞ఈ . (10.3)

Even though Rosenfeld presented an explicitly 𝑞-number version of his formalism
in his 1930 article, he did not address the question of how one would or could in-
corporate the arbitrary functions 𝜆 into the quantum theory. However, as pointed
out elsewhere (Salisbury 2009a), he had all the tools required to construct gauge
invariant objects using his symmetry group generators. In a review of quantum
electromagnetism published two years later (Rosenfeld 1932), he simply reverted
to the Fermi scheme, after having convinced himself that his prior analysis jus-
tified the procedure. Curiously, however, he did not express this conviction in
writing.

In 1933, Dirac published a paper entitled “Homogenous Variables in Classi-
cal Dynamics” in which he considered a far narrower class of models than Rosen-
feld had examined, not citing him even though it is clear from an exchange of
letters in 1932 that Dirac was familiar with Rosenfeld’s work. Dirac wrote in this
paper:

The well-known methods of classical mechanics, based on the use
of a Lagrangian or Hamiltonian function, are adequate for the treat-
ment of nearly all dynamical systems met with in practice. There are,
however, a few exceptional cases to which the ordinary methods are
not immediately applicable. For example, the ordinary Hamiltonian
method cannot be used when the momenta 𝑝, defined in terms of
the Lagrangian function 𝐿 by the usual formulae 𝑝 = 𝜕𝐿/𝜕�̇�, are
not independent functions of the velocities. (Dirac 1933)

Dirac used the electromagnetic field and the massless relativistic particle as ex-
amples to illustrate his program. The outcome is the same Hamilton equations
exhibited by Rosenfeld, with the same arbitrary functions (though designated by
Dirac by 𝜌 rather than 𝜆). Referring to Dirac’s paper, in 1946 Chang observed
that the appearance of these arbitrary functions seemed to preclude passage to a
quantum theory.

10.3 Chang’s Contributions to Hamiltonian Systems

From July 1944 to June 1946, Chang published three papers on the quantization
of constrained systems: “A Note on the Hamiltonian Theory of Quantization”
(Chang 1945), “A Note on the Hamiltonian Equations of Motion” (Chang 1946),
and “A Note on the Hamiltonian Theory of Quantization (II)” (Chang 1947).
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The first and second papers were completed under very difficult conditions
in Chongqing, a southwestern city in China, during the Sino-Japanese War. They
were published in the Proceedings of the Royal Society of London and Proceed-
ings of the Cambridge Philosophical Society, respectively, and were communi-
cated by Dirac. In the second and third papers, Chang expressed his thanks to
Dirac for discussions. The third paper, completed at Cambridge University, was
the most extensive, summarizing some results from the previous two, and is the
principal subject of our analysis. This 1947 paper is divided into three sections in
which Chang discusses the need for dealing with the arbitrary functions 𝜆, a pro-
posal for quantizing models in which constraints are imposed at the Lagrangian
level through the use of Lagrange multipliers, and a proposal for quantizing sys-
tems with primary constraints.

First, Chang observed, in referring to Dirac’s 1933 paper,

The Lagrangian equations for cases with missing momenta have been
studied some time ago by Dirac by making use of homogeneous vari-
ables. It was shown that the equations of motion can always be put
in canonical form. However, the final equations still contain quanti-
ties of the nature of unknown Lagrange multipliers, and are thus not
suitable for passing to a quantum theory. (Chang 1947)

This may be the first published observation of the challenge that the undetermined
functions posed for the canonical quantization program.

10.3.1 Models with Lagrange Multipliers

The first models that Chang considered were models in which constraints were
imposed “by hand” through the use of Lagrange multipliers. He considered sys-
tems for which the Lagrangian contained only first derivatives 𝑞ఈ,ఓ ∶= డഀ

డ௫ഋ . He
supposed that variations of the action

𝐼 ∶= න𝐿 ൫𝑞ఈ , 𝑞ఈ,ఓ , 𝑥൯ 𝑑ସ𝑥, (10.4)

were subject to 𝑓 auxiliary conditions

𝑓(క)(𝑞ఈ , 𝑞ఈ,ఓ , 𝑥) = 0 (𝜉 = 1, 2, … , 𝑓). (10.5)

Then it followed that

𝜕𝐿
𝜕𝑞ఈ +𝜇(క)

𝜕𝑓(క)
𝜕𝑞ఈ − 𝜕

𝜕𝑥ఓ ቆ
𝜕𝐿
𝜕𝑞ఈ,ఓ

+𝜇(క)
𝜕𝑓(క)
𝜕𝑞ఈ,ఓ

ቇ = 0. (10.6)
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Eqs. (10.5) and (10.6) are the field equations. The Lagrange multipliers 𝜇క are
understood to depend on the space-time coordinates, represented collectively by
the symbol 𝑥, where we will take them to be real, with 𝑥ఓ = {𝑐𝑡, �⃗�}.5 Superscripts
𝜇, 𝜈, … run from 1 to 4, while superscripts 𝑟, 𝑠, … go from 1 to 3. The 𝑞ఈ are the
dynamical field variables.

Chang claimed to have achieved a first-order canonical form for his
field equations by first implicitly defining the functions 𝑏ఈ(𝑝ఈ , 𝑞ఈ , 𝑞ఈ, , 𝑥) and
𝜂క(𝑝ఈ , 𝑞ఈ , 𝑞ఈ, , 𝑥) through the relations

𝑓(క)(𝑞ఈ , 𝑞ఈ, , 𝑏ఈ , 𝑥) = 0 (10.7)

and

𝑝ఈ −
𝜕
𝜕𝑏ఈ 𝐿(𝑞

ఈ , 𝑞ఈ. , 𝑏ఈ , 𝑥) − 𝜂క
𝜕
𝜕𝑏ఈ 𝑓

(క)(𝑞ఈ , 𝑞ఈ. , 𝑏ఈ , 𝑥) = 0, (10.8)

where a sum over 𝜉 is understood. He then defined the Hamiltonian to be

𝐻(𝑝ఈ , 𝑞ఈ , 𝑞ఈ , 𝑥) ∶= −𝐿(𝑞ఈ , 𝑞ఈ , 𝑏ఈ , 𝑥) + 𝑝ఈ𝑏ఈ , (10.9)

where a sum over 𝛼 is understood.
Using this Hamiltonian function, the canonical equations became

𝜕𝑞ఈ
𝜕𝑡 = 𝛿 𝐻

𝛿𝑝ఈ(�⃗�)
= 𝜕𝐻
𝜕𝑝ఈ

(10.10)

and

𝜕𝑝ఈ
𝜕𝑡 = − 𝛿 𝐻

𝛿𝑞ఈ(�⃗�) = −ቆ 𝜕𝐻𝜕𝑞ఈ − 𝜕
𝜕𝑥

𝜕𝐻
𝜕𝑞ఈ,

ቇ , (10.11)

where 𝐻 ∶= ∫𝐻𝑑ଷ𝑥.
Substituting for 𝐻 we obtain

𝜕𝑞ఈ
𝜕𝑡 = 𝑏ఈ + 𝜂క

𝜕𝑓(క)
𝜕𝑏ఉ

𝜕𝑏ఉ
𝜕𝑝ఈ

(10.12)

5Chang used ೣర ∶స .
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and

𝜕𝑝ఈ
𝜕𝑡 = 𝑑𝐿(𝑞ఈ , 𝑏ఈ , 𝑥)

𝑑𝑞ఈ + 𝜂క
𝑑𝑓(క)(𝑞ఈ , 𝑏ఈ , 𝑥)

𝑑𝑞ఈ

− 𝜕
𝜕𝑥 ቊ

𝑑𝐿(𝑞ఈ , 𝑏ఈ , 𝑥)
𝑑𝑞ఈ,

+ 𝜂క
𝑑𝑓(క)(𝑞ఈ , 𝑏ఈ , 𝑥)

𝑑𝑞ఈ,
ቋ ,

(10.13)

where we define the total derivative with respect to 𝑞ఈ as

𝑑𝐿(𝑞ఈ , 𝑏ఈ , 𝑥)
𝑑𝑞ఈ ∶= 𝜕𝐿(𝑞ఈ , 𝑏ఈ , 𝑥)

𝜕𝑞ఈ + 𝜕𝐿(𝑞ఈ , 𝑏ఈ , 𝑥)
𝜕𝑏ఉ

𝜕𝑏ఉ
𝜕𝑞ఈ . (10.14)

Chang claimed that eq. (10.12) yielded

𝜕𝑞ఈ
𝜕𝑥ସ

= 𝑏ఈ ,

failing to mention that this form is achievable only by requiring that

𝜂క
𝜕𝑓(క)
𝜕𝑏ఉ

𝜕𝑏ఉ
𝜕𝑝ఈ

= 0.

He also did not observe that additional restrictions regarding the 𝑞ఈ-depend-
ence of the constraining relations (10.5) arise by requiring that the dynamical
eq. (10.13) be equivalent to the Euler-Lagrange field eq. (10.6).

Generally this means that there are severe limitations to the applicability of
Chang’s method. We can, however, give a simple illustrative example in which
the procedure may be implemented. We consider a system with

𝐿 = 1
2 ቆ

𝑑𝑞
𝑑𝑡 ቇ

ଶ

and an auxiliary condition

𝑓 = 𝑑𝑞
𝑑𝑡 = 0.

Then, employing Chang’s symbols, we have



258 10. Tsung-Sui Chang (X. Yin/Z. Zhu/D. Salisbury)

𝑓 = 𝑏 = 0,

𝑝 = 𝜕𝐿
𝜕𝑏 + 𝜂𝜕𝑓𝜕𝑏 = 𝑏 + 𝜂 = 𝜂,

𝐻 = 𝑝𝑏 − 1
2𝑏

ଶ = 0,
{𝑞, 𝑝}.. = 1,

�̇� = 𝜕𝐻
𝜕𝑝 = 0,

�̇� = −𝜕𝐻𝜕𝑞 = 0.

We note also that the relevant additional consistency condition that is required to
achieve the correct Euler-Lagrange equations is

𝜂𝑑𝑓(𝑞, 𝑏)𝑑𝑞 = 𝜂 ቆ𝜕𝑓𝜕𝑞 + 𝜕𝑓
𝜕𝑏

𝜕𝑏
𝜕𝑞ቇ = 0. (10.15)

This does vanish since 𝑓 is independent of 𝑞, and 𝑏 vanishes identically. So
although we have a non-trivial model with a Lagrange multiplier that leads to a
self-consistent quantum theory here, it is dubious that the procedure could enjoy
widespread applicability.

10.3.2 Models with Missing Momenta

Chang next discussed models which possessed missing momenta, i.e., models
that in our current terminology have primary constraints. Chang identified those
momenta as “missing” that vanished due to the absence of the time derivative of
the conjugate configuration variable in the Lagrangian. He assumed that a trans-
formation of these variables had been undertaken so that all primary constraints
would take this simple form, thus dividing the configuration variables into a set
𝑞ఈ such that the 𝑞ఈ, could be written in terms of the conjugate momenta 𝑝ఈ, and
another set 𝑄 with momenta 𝑃 = 0. Chang appears to have been the first to rec-
ognize in print that this decomposition was achievable at the Lagrangian level,
although he did not note that to implement it, it might be necessary to add total
derivative terms to the Lagrangian. Dirac added such terms for general relativity
in 1958 (Dirac 1958).

In terms of these variables, the Lagrangian field equations take the form
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𝜕𝐿
𝜕𝑞ఈ − 𝜕

𝜕𝑥ఓ ቆ
𝜕𝐿
𝜕𝑞ఈ,ఓ

ቇ = 𝛿𝐿
𝛿𝑞ఈ − 𝜕𝑝ఈ

𝜕𝑡 − = 0 (10.16)

and

𝑓(𝑞ఈ , 𝑄 , 𝑞ఈ,, 𝑥) ∶= 𝛿𝐿/𝛿𝑄 = 0, (10.17)

where 𝐿 ∶= ∫ 𝐿𝑑ଷ𝑥. Thus Chang recognized that the relations (10.17) were them-
selves constraints, in addition to the primary constraints.6

He then presented a procedure about which he explicitly recognized that it
was applicable only when the constraints could be employed to eliminate the 𝑄
as independent variables. That is, he assumed that the relations

𝑝ఈ −
𝜕𝐿(𝑞ఈ , 𝐵 , 𝑏ఈ , 𝑥)

𝜕𝑏ఈ = 0 (10.18)

and

𝑓(𝑞ఈ , 𝐵 , 𝑏ఈ , 𝑥) = 0 (10.19)

could be solved for

𝑄 =∶ 𝐵(𝑞ఈ , 𝑞ఈ, , 𝑝ఈ , 𝑥). (10.20)

Then under these circumstances, the Hamiltonian

𝐻(𝑝ఈ , 𝑞ఈ , 𝑥) = −𝐿(𝑞ఈ , 𝐵 , 𝑏ఈ , 𝑥) + 𝑝ఈ𝑏ఈ

delivers

𝜕𝑞ఈ
𝜕𝑡 = 𝜕𝐻

𝜕𝑝ఈ
= 𝑏ఈ(𝑞, 𝑞, , 𝑝, 𝑥) (10.21)

and

𝜕𝑝ఈ
𝜕𝑡 = − 𝛿�̃�

𝛿𝑝ఈ(�⃗�)
(10.22)

and is equivalent to the original Lagrangian field equations.
Thus Chang recognized correctly that systems may exist where the con-

straints can be solved. And in this case, upon passing to the quantum theory, one
can have canonical Hamiltonian equations and commutation relations just for the

6In the following section, Chang showed that in gauge covariant models these constraints arise due
to the demand that primary constraints be preserved under time evolution.
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independent variables𝑝ఈ and 𝑞ఈ with the𝑄 becoming functions of𝑝ఈ , 𝑞ఈ .He did
not observe that this circumstance arises when the constraints have non-vanishing
Poisson brackets among themselves, or in the language that was introduced by
Dirac in 1950, when the constraints are second class (Dirac 1950).

The models for which the constraints cannot be solved belong to another
type. Chang also discussed a limited version of this case, which we address in the
next subsection. This is the situation with gauge theories for which the constraints
do have vanishing Poission brackets among themselves. Dirac called such con-
straints first class. So although Chang did not characterize them in this way, he
was certainly aware that there existed two kinds of constrained systems, and he
presented a preliminary procedure for quantizing them.

Dirac was one of the first to propose a quantization procedure that dealt with
both types. In gauge theories, he noted that gauge conditions need to be invoked,
and he introduced modified brackets that respected these conditions (Dirac 1950).
It seems likely that Chang’s work would have influenced Dirac’s movement in this
direction.

10.3.3 Gauge Covariant Models

Having realized that his program for second class constraints did not work for
systems like electromagnetism, Chang then embarked on an alternate approach.
He considered a system in which the Lagrangian 𝐿 is such that some of the 𝑝ఈ are
missing, but with the assumption that 𝐿 is increased by an amount 𝐹(𝑥) under
the transformation

𝑞ఈ(𝑥) → 𝑞ఈ(𝑥) + 𝐹ఈ(𝑥).
We represent the resulting variations with the symbol �̄�, writing �̄�𝑞ఈ = 𝐹ఈ. The
resulting variation of the Lagrangian is

�̄�𝐿 = 𝜕𝐿
𝜕𝑞ఈ 𝐹

ఈ + 𝜕𝐿
𝜕𝑞ఈ,ఓ

𝐹ఈ,ఓ =∶ 𝐹 . (10.23)

Chang remarks that the variation he is considering “is not the same as an
ordinary gauge transformation,” but he calls it a gauge transformation “for lack
of a better name.” Yet he does assume that his Euler-Lagrange equations are co-
variant under this transformation. This result follows immediately from the as-
sumption that 𝐹 is a function only of 𝑥 (and not of the dynamical variables).
He is perhaps assuming, at least initially, that the 𝐹ఈ do not depend on arbitrary
space-time functions. Also, general gauge transformations have a dependence on
the dynamical variable, i.e., �̄�𝑞ఈ = 𝐹ఈ(𝑞ఉ , 𝑞ఉ,ఓ , 𝑥). Such is the case, for example,
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with general relativity and also with the homogeneous models that were treated
by Dirac (1933). In any case, the electromagnetic model that he cites specifically
as susceptible to his analysis is clearly gauge covariant in the current sense.

Next, Chang points out that when the field equations are satisfied, one ob-
tains, after performing a spatial integration by parts and letting the gauge varia-
tions vanish at spatial infinity,

𝜕
𝜕𝑡 න𝑑ଷ𝑥 ቆ𝐹ఈ 𝜕𝐿

𝜕𝑞ఈ,
ቇ − න𝑑ଷ𝑥𝐹 = 0. (10.24)

At this point, Chang assumes that the 𝐹ఈ involve arbitary functions Φ of
the time up to order 𝑢, and this leads him to a remarkable result: it follows from
eq. (10.24) that the coefficients of each order of time derivative must separately
vanish. This result was already known, to be sure, to Rosenfeld in 1930—but
it was independently rediscovered in 1951 by James L. Anderson and Bergmann
and is generally attributed to them (Anderson and Bergmann 1951). Indeed, these
authors introduced the terminology that is still in use today. The requirement
that primary constraints be preserved under time evolution may lead to secondary
constraints. These in turn may lead to tertiary constraints, and so on.

Chang notes that the highest derivative term, డ
ೠ
డ௧ೠ , that appears in eq. (10.24)

will not involve a time derivative of momenta. This term is

න𝑑ଷ𝑥 ቆ𝜕𝐹
ఈ

𝜕𝑡 𝑝ఈቇ , (10.25)

and isolating the coefficient of డೠ
డ௧ೠ in the integrand, we deduce the existence of

primary constraints that Chang represents as 𝑔௨(𝑞, 𝑝) = 0. But then the coeffi-
cient of డೠషభ

డ௧ೠషభ will be in the form

𝑔௨ିଵ(𝑝,, 𝑝) ∶=
𝜕𝑔௨(𝑞, 𝑝)

𝜕𝑡 − 𝐶௨ିଵ(𝑞, 𝑝) = 0. (10.26)

In other words, the preservation of the primary constraint requires the exis-
tence of a secondary constraint 𝐶௨ିଵ(𝑞, 𝑝) = 0, and so on. Thus eq. (10.24) may
be rewritten as

න𝑑ଷ𝑥 ቊ𝑔(𝑝, 𝑝,)Φ + 𝑔ଵ(𝑝, 𝑝,)
𝜕Φ
𝜕𝑡 + … + 𝑔௨(𝑝, 𝑝,)

𝜕௨Φ
𝜕𝑡௨ ቋ = 0 (10.27)

with



262 10. Tsung-Sui Chang (X. Yin/Z. Zhu/D. Salisbury)

𝑔 = 𝑔ଵ = …𝑔௨ = 0. (10.28)

Actually, Chang did not state explicitly that constraints 𝐶 would arise, but it is an
immediate consequence of the relation (10.24).

Although Chang did not provide a concrete example, it is instructive to take
the electromagnetic field as an example to illustrate his formulation—and identify
one shortcoming. As mentioned above, Chang did note that the electromagnetic
model satisfied his assumptions regarding the gauge invariance of the Lagrangian.
This is true, provided that the charged source current is understood to be a non-
dynamical external field, as we highlight below.

The Lagrangian for this model is

𝐿 = −14𝐹
ఓఔ𝐹ఓఔ + 𝑗ఓ𝐴ఓ , (10.29)

where

𝐹ఓఔ ∶= 𝐴ఔ,ఓ − 𝐴ఓ,ఔ (10.30)

and 𝑗ఓ is an external current. Then the conjugate momenta are

𝑝 = 𝜕𝐿
𝜕�̇�

= 𝐹 = −�̇� − 𝐴, , (10.31)

while 𝑝 =∶ 𝑃 vanishes identically.
The Lagrangian equations of motion are

𝜕𝐹 + 𝜕𝐹 + 𝑗 = 0 (10.32)

and

𝜕𝐹 + 𝑗 = 0. (10.33)

The gauge variation is

�̄�𝐴ఓ = Φ,ఓ . (10.34)

The variation of the Lagrangian under this transformation is

�̄�𝐿 = 𝐹ఓఔΦ,ఓఔ + 𝑗ఓΦ,ఓ = 𝑗ఓΦ,ఓ =∶ 𝐹 . (10.35)

Thus, provided that 𝑗ఓ is a prescribed function of 𝑥, the variation may be written
as a total time derivative, and the variation is a true gauge transformation.
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Performing integrations by parts of the action, and letting the variations van-
ish at spatial infinity, we find that if the equations of motion are satisfied, then

𝜕
𝜕𝑡 න𝑑ଷ𝑥 ൫𝑃Φ̇ − 𝑝,Φ൯ = −න𝑑ଷ𝑥𝜕𝑗Φ+න𝑑ଷ𝑥𝑗Φ̇ (10.36)

or

න𝑑ଷ𝑥 ൣ𝑃Φ̈ + ൫�̇� − 𝑝, − 𝑗൯ Φ̇ − ൫�̇�, + 𝑗,൯Φ൧ = 0

=∶ න𝑑ଷ𝑥 ൫𝑔ଶΦ̈ + 𝑔ଵΦ̇ + 𝑔Φ൯ . (10.37)

Thus, the Gauss’s law constraint 𝐶 ∶= 𝑝, + 𝑗 = 0 may be a consequence
of the required vanishing of the time derivative of the primary constraint 𝑃 = 0.

Chang showed generally that the consistency conditions (10.37) guarantee
that if the equation of motion

𝛿𝐿
𝛿𝑄 = 0 (10.38)

is fulfilled at the initial time, then it is fulfilled for all time. For the electromag-
netic example, this means that if

𝛿𝐿
𝛿𝑄 = ∇⃗ ⋅ ̇⃗𝐴 − ∇ଶ𝑄 + 𝑗 = 0 (10.39)

is fulfilled at an initial time, then it will be fulfilled at all future times. Chang
therefore proposes that the variables 𝑄 ∶= 𝐴 and 𝑃 can be eliminated entirely by
setting 𝑄 = 0, and therefore setting as an initial condition

∇⃗ ⋅ ̇⃗𝐴 = −𝑗. (10.40)

Finally in passing to the quantum theory, he imposes this classical initial condition
as a condition on the quantum state Ψ,

(∇⃗ ⋅ �⃗� − 𝑗)Ψ = 0. (10.41)

So the ultimate practical outcome of this analysis for quantum electrodynamics
is that Chang provided another, somewhat more general proof of the legitimacy
of the second quantization procedure proposed by Heisenberg and Pauli (1930).
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10.4 Conclusion

In summary, we have identified the following five original contributions of Chang
to the quantization of constrained systems:

1. He was the first to recognize in print, and to offer a preliminary resolution
of, a problem for quantization posed by the appearance of arbitrary space-
time functions in classical gauge theories.

2. Chang proposed a procedure for imposing quantum constraints, using La-
grangian multipliers, for a limited class of non-singular classical theories.

3. He recognized that constrained systems could exist in which the constraints
could be solved, thereby entirely eliminating some canonical degrees of
freedom. Canonical Poisson bracket relations of the remaining phase space
variables could then be replaced by canonical quantum commutation re-
lations. Furthermore, he showed that in these models, the functions that
multiply the constraints become functions of the dynamical variables, and
that they therefore become non-trivial operators in quantum theory. Dirac
later discovered that these models possessed the property that the Poisson
brackets of the constraints among themselves did not vanish.

4. He discovered for a limited class of classical gauge theories that the preser-
vation of primary constraints under time evolution leads to additional con-
straints. This discovery has until recently been attributed to Anderson and
Bergmann in 1951, even though the general proof was already demon-
strated by Rosenfeld in 1930.

5. Chang developed a technique for quantizing a class of gauge covariant
models that could be viewed in the case of electromagnetism as a some-
what more general proof of the legitimacy of the quantization procedure
proposed by Heisenberg and Pauli in 1930. This method formulates the
gauge condition as a restriction on initial quantum states.

There is a clear link between Chang’s activities during 1945–1947 and Dirac’s
subsequent publications beginning three years later on constrained Hamiltonian
systems. In future work, we intend to further investigate the detailed manner in
which they influenced each other.
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