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Chapter 2
Guidobaldo del Monte and Renaissance Mechanics
Walter Roy Laird

To historians of mechanics, Guidobaldo del Monte presents something of a para-
dox. On the one hand, he attempted to found mechanics on the strictest princi-
ples of abstract, Archimedean statics. On the other, he insisted that mechanics
was not a purely abstract, mathematical science, but rather was essentially con-
cerned with actual machines. He vigorously criticized Tartaglia (among others)
for vainly attempting to separate a mathematical from a physical mechanics, “as
if mechanics could be considered apart from either geometrical demonstrations or
actual motion.”1 His practical interest in the workings of actual machines has been
remarked on by a number of historians, including Alex Keller, Enrico Gamba, Gi-
anni Micheli, and Mary Henninger-Voss; they and others, notably Paul Lawrence
Rose, Stillman Drake, and Domenico Bertoloni Meli, have also called attention to
Guidobaldo’s important role in the sixteenth-century Archimedean revival. These
two features of Guidobaldo’s mechanics—the practical and the Archimedean—
were perhaps his most significant contributions to the renaissance of mechan-
ics in the sixteenth century.2 But Guidobaldo has also come under considerable
criticism from historians, both for his unreasonable demands for an excessive
mathematical precision in mechanics, and for his failure to include principles of
motion and dynamics. He is notorious, for example, for trying to take account
of the convergence of the arms of the balance to the center of the earth, a con-
vergence that is immeasurably small even in the largest balances. For this reason
Pierre Duhem dismissed him as a narrow-minded geometer, whose “exaggerated
regard for deductive rigour” (le souci exagéré de la rigueur déductive) and his “un-
critical admiration of the Ancients” (l’admiration exclusive de anciens) blinded
him to the promising results reached through more intuitive reasoning by Jor-

1“Ac si aliquando, vel sine demonstrationibus geometricis, vel sine vero motu res mechanicae con-
siderari possint” (Monte 1577, f. **1v; tr. Drake and Drabkin 1969, 245).
2See (Drake and Drabkin 1969, 44–48; Rose 1975, 222–242; Keller 1976; Gamba and Montebelli
1988; Bertoloni Meli 1992; Micheli 1992; Gamba 1998; Henninger-Voss 2000; Bertoloni Meli 2006,
26–32).
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danus de Nemore, Girolamo Cardano, and Niccolò Tartaglia.3 More recently,
Stillman Drake repeated Duhem’s criticisms, but specified that what Guidobaldo
had missed in Jordanus and Tartaglia was the general principle that the products
of force and virtual displacement are equal for systems in equilibrium. Accord-
ing to Drake, this was because Guidobaldo had insisted that a greater power was
necessary to produce motion than equilibrium; and Guidobaldo had excluded all
dynamical concepts such as work and virtual velocity from mechanics because
he held that Archimedean statics had superseded the dynamical approach of the
pseudo-Aristotelian Mechanical Problems (Drake and Drabkin 1969, 48). Paul
Lawrence Rose went even further, to assert that for Guidobaldo, statics and dy-
namics were “two entirely separate sciences without common principles” (Rose
1975, 232; see also 233, 234–235, note 2). According to Rose, Guidobaldo

despaired [...] of there ever being a mathematical science of dynam-
ics and himself erected unbridgeable barriers between dynamics and
mathematical statics. (Rose 1975, 229)

But as Maarten Van Dyck has shown in a recent article, Guidobaldo was
not so slavish a follower of the ancients, nor so blinded by a concern for mathe-
matical rigour, as Duhem and others have thought. Guidobaldo did take account
of the convergence of the ends of the balance, but only to refute the mechanical
principles of Jordanus and Tartaglia, which was necessary to defend the coher-
ence of what he saw as the sovereign principle of mechanics, the equilibrium of
centers of gravity, understood within an earth-centered Aristotelian cosmos. Van
Dyck has thus restored to Guidobaldo’s criticisms of Jordanus and Tartaglia their
original purpose and intent (Van Dyck 2006). In a similar way, I should like to
show how Guidobaldo’s so-called failure to include in his mechanics dynamical
principles such as virtual velocities was the natural result of his adoption of the
equilibrium of centers of gravity as its foundational principle. In other words, I
should like to recover the original scope and intent of Guidobaldo’s mechanics
from the expectations imposed upon it by historians looking back through later
developments.

Given that Guidobaldo had adopted the equilibrium of centers of gravity as
the sovereign principle in mechanics, how did he attempt to apply it to the actual
motion of real machines? And how did his choice of this principle determine the
nature and scope of the mechanics that followed from it? To answer these ques-
tions I shall first look at the application of the principle to the simple machines in
Guidobaldo’sMechanicorum liber (1577), his major mechanical work. His other

3See (Duhem 1905-1906, I, 209–226; tr. Duhem 1991, 148–159). The phrases quoted are on p. 151
and 159.
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published work on mechanics, the Paraphrase of Archimedes’s On Plane Equi-
librium (1588), concerns the establishment and mathematical applications of this
principle, and so has little to add concerning its mechanical applications, though
its Preface contains some interesting comments on mechanics. But in addition to
these two printed works, Guidobaldo also made a number of notes on mechanical
matters that form part of his unpublishedMeditatiunculae de rebus mathematicis
(musings on mathematical topics), the manuscript of which Guglielmo Libri dis-
covered in the Bibliothèque Nationale, in Paris, and from which he printed a few
extracts in 1840.4 These notes on mechanics, at least some of which were written
after the publication of theMechanicorum liber, include both an attempt to recast
the pseudo-Aristotelian Mechanica in an Archimedean mold, and Guidobaldo’s
own treatment of the inclined plane. My argument will be that, because the prin-
ciple of the equilibrium of the balance is Guidobaldo’s fundamental principle of
mechanics, mechanical motions for him are fundamentally disequilibriums; this
means that while equilibrium is a determinate state and thus subject to mathemat-
ical exactitude, disequilibrium produces motion, which is thus indeterminate and
subject to unavoidable and unaccountable material disturbances. This explains, I
think, both the source of his criticisms of Jordanus and Tartaglia, and his apparent
neglect of motion and dynamics in his mechanics.

But before I turn to the Mechanicorum liber, I should like to sketch briefly
the state of mechanics before Guidobaldo. The work that set the scope and pro-
gram of mechanics and gave the first definitive content to the nascent science
in the sixteenth century was the pseudo-Aristotelian Mechanica (or Quaestiones
mechanicae). In its introduction, the Mechanica reduced mechanical marvels to
the balance and ultimately to the marvelous properties of the circle. Analyzing
the movement of the ends of the balance into a natural and a violent or preter-
natural component, it argued that a power is swifter and thus more effective the
greater its natural component over its violent. For this reason a weight or a power
is more effective the longer the arm of the balance, since the longer arm par-
takes more of the natural than the violent movement. This principle of circular
movement was then applied to a number of questions, the first few concerning
the balance and the lever, later ones taking up the wheel, the wedge, pliers, and
the like, including a number of questions on topics such as the motion of heavy
bodies, projectile motion, and whirlpools that have little or nothing to do with the
principle of circular movement. The Mechanica was translated into Latin early
in the sixteenth century and was the subject of several commentaries and para-
4Paris, Bibliothèque Nationale, fonds lat. ms 10246. See (Drake and Drabkin 1969, 48). TheMedi-
tatiunculae has been edited by Roberta Tassora (2001), a partial copy of which Pier Daniele Napoli-
tani, who directed the thesis, kindly made available to me after this paper was written; the passages
quoted from the Meditatiunculae are in my own transcriptions. The mechanical pages of the Medi-
tatiunculae are discussed by Tassora (2001, 75–100).
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phrases by mid-century, including an influential paraphrase and commentary by
Alessandro Piccolomini. It was lectured on at the University of Padua by Pietro
Catena in the 1560s, by Giuseppe Moletti in the 1580s, and by Galileo in the
1590s.5

At the same time as the pseudo-AristotelianMechanicawas becoming more
widely known, the medieval science of weights (scientia de ponderibus), repre-
sented especially by the works attributed to Jordanus de Nemore, was reintro-
duced in the sixteenth century, first by Peter Apian’s printing of the Liber de
ponderibus in 1533, and then by Tartaglia’s printing of the magisterial De ra-
tione ponderis in 1565.6 For Jordanus, the swiftness and thus the effectiveness
of a weight depended on the directness or obliquity of its motion, where motion
on the circumference of a larger circle is more direct than motion on a smaller.
Significantly, Jordanus recognized that the speeds and the distances of the mo-
tions of weights were to be measured along their vertical descents, which led
him to the correct solution of the inclined plane and historians to the conclusion
that he was, in effect, appealing to the principle of virtual work. For Niccolò
Tartaglia, the science of weights from Jordanus provided the principles of the
mechanics found in the pseudo-Aristotelian Mechanica. Book 7 of Tartaglia’s
Quesiti et inventioni diverse (Diverse Questions and Inventions, 1546) was thus
devoted to a discussion of theMechanica, while Book 8 established its principles
using the science of weights.7 To the pseudo-AristotelianMechanica and the me-
dieval science of weights, a third tradition in mechanics was added. By the mid-
sixteenth century, the works of Archimedes were already being edited, translated,
and assimilated into mathematics, notably by Francesco Maurolico in Messina
and Federico Commandino in Urbino. Lacking Archimedes’s text, Maurolico
(by his own account) reconstructed On the Equilibrium of Planes in his brilliant
De momentis aequalibus (On Equal Moments); like Guidobaldo, as we shall see,
Maurolico saw equilibrium as providing the foundation for mechanics, which he
developed as a commentary on and an extension of the pseudo-Aristotelian Me-
chanica, although neither of his works on mechanics was to be published until the
next century.8 Guidobaldo, on the other hand, knew the Equilibrium of Planes
in the translation published by Federico Commandino in 1565. But the greatest
difference between Maurolico and Guidobaldo was in the scope and content of
mechanics: where Maurolico included in mechanics more or less everything in
the pseudo-AristotelianMechanica, Guidobaldo restricted it to Heron’s five sim-
5On the sixteenth-century tradition of the Mechanica, see (Rose 1975; Rose and Drake 1971; De
Gandt 1986; Laird 1986).
6See (Nemorarius 1533 and 1565).
7For Jordanus and the medieval science of weights, see (Moody and Clagett 1952; Tartaglia 1546;
excerpts tr. Drake and Drabkin 1969, 104–143).
8See (Maurolico 1613; Tucci 2004), on Maurolico’s mechanics, see (Laird in press).
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ple powers or machines, an account of which he had found in Commandino’s
translation of the Mathematical Collection of Pappus of Alexandria.9 And from
Pappus Guidobaldo also adopted Heron’s general challenge for mechanics: to
move a given weight with a given power using a machine. Guidobaldo’s pur-
pose in writing the Mechanicorum liber, then, was to demonstrate the principle
of equilibrium of centers of gravity, exposing the errors of those like Tartaglia
who relied on the science of weights, and then to apply this principle in turn to
explain each of the five simple machines in order to answer Heron’s challenge.

The Mechanicorum liber thus has six parts or treatises, the first devoted to
the demonstration of the principle of equilibrium of the balance, the subsequent
five to the lever, pulley, wheel and axel, wedge, and screw. The first part has al-
ready been treated elsewhere in detail by Vico Montebelli (1988) and by Maarten
Van Dyck (2006). To their accounts I should like to add only that the source and
foundation of Guidobaldo’s criticism of Jordanus and Tartaglia seems to have
been that, in attributing mechanical effects to the swifter or slower speeds of more
or less direct or oblique motions, they had mistaken effects for causes. For ac-
cording to Guidobaldo, they simply could not demonstrate that a weight on the
end of beam is heavier when the beam is horizontal than at any other position,
since its straighter or swifter movement at the horizontal position is merely a sign
(i.e., a result) rather than a cause; nor do they prove that the weight is heavier by
its being at that place, but only by its departing from that place.10 For the true
foundation ofmechanics is not direct or obliquemotion, according to Guidobaldo,
but Archimedes’s principle of the equilibrium of centers of gravity. In the Dedi-
catory Letter of theMechanicorum liber, Guidobaldo stated that in Archimedes’s
Equilibrium of Planes “all the theories of mechanics are gathered as in an abun-
dant store.”11 And in the Preface to his later Paraphase of On the Equilibrium of
Planes, he wrote that “the whole of mechanics depends on this sole and foremost
foundation,” that is, on the principle that in equilibrium the weights are inversely
as the distances.12

That speed and motion are results, not the causes, of equilibrium and dis-
equilibrium Guidobaldo states explicitly in the corollary to Proposition 6 of the
first treatise, De libra (On the Balance). In Proposition 5 Guidobaldo had proved

9On Commandino’s edition and translation of Pappus’sMathematical Collection, and Guidobaldo’s
role in its publication, see (Rose 1975, 209–213).
10See (Monte 1577; tr. Monte 1581; tr. Drake and Drabkin 1969, 267–268).
11“Eruditissimus tamen libellus de aequeponderantibus prae manibus hominum adhuc versatur, in
quo tanquam in copiosissima poenu omnia fere mechanica dogmata reposita mihi videntur” (Monte
1577, f. **1r; tr. Drake and Drabkin 1969, 244).
12“Tota mechanica facultas tanquam unico, praecipuoque fundamento innititur” (Monte 1588, 4); the
Preface is edited and translated into German in (Frank 2007), the quotation is on p. 118; the translation
quoted here is by Rose (1975, 234).
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the central theorem of equilibrium, that weights are in equilibrium when their
distances from the center are inversely as their weights. In Proposition 6 he then
proves that equal weights weigh in proportion to their distances from the center.
And from this follows the corollary that, since the farther a weight is from the
center of the balance the heavier it will be, so its motion will be the swifter. Rel-
egated to a corollary, speed and motion are thus the results, not the causes, of
greater or lesser heaviness.13

Having established in these first propositions the principle of the equilibrium
of the balance, Guidobaldo then applied it in turn to each of Heron’s five sim-
ple powers or machines—the lever, pulley, wheel and axel, wedge, and screw.
In each case, he used the principle to find the power needed to sustain the load
in equilibrium; he then assumed that actually to move the load would require a
somewhat greater power. In the case of the lever, he stated this as follows:

For the space of the power has the same ratio to the space of the
weight as that of the weight to the power which sustains the same
weight. But the power that sustains is less than the power that moves;
therefore the weight will have a lesser ratio to the power that moves
it than to the power that sustains it. Therefore the ratio of the space
of the power that moves to the space of the weight will be greater
than that of the weight to the power.14

The conditions of equilibrium having been established, motion is produced
only by the addition of some indefinite amount of power. Notice that Guidobaldo
has no aversion to comparing the spaces moved by powers and weights, in exactly
the way that Jordanus and Tartaglia did. But for Guidobaldo, these spaces and
motions are the results of the disequilibrium caused by an indefinite increase of
power; they are not themselves the causes.

In the treatises on the pulley, on the wheel and axel, and on the screw,
Guidobaldo also introduced the time taken to move the weight and its speed, not-
ing that the more easily a power can move a weight, the more slowly it does so.15

13See (Monte 1577, ff. 30v–36r; tr. Monte 1581, ff. 29v–33v; tr. Drake and Drabkin 1969, 296, proofs
omitted).
14“Percioche lo spatio della possanza allo spatio del peso ha la medesima proportione, che il peso
alla possanza, che sostiene il detto peso. Ma la possanza, che sostiene è minore della possanza che
move, però haurà proportione minore alla possanza che lo move, che alla possanza, che lo sostiene.
Lo spatio dunque della possanza che move allo spatio del peso haurà proportione maggiore, che il
peso all’istessa possanza.” See (Monte 1577, f. 43r–v; tr. Monte 1581, f. 39v; tr. Drake and Drabkin
1969, 300).
15See (Monte 1577); De trochlea, Prop. 28, Cor. 2, f. 107 v; tr. (Monte 1581, 101 v; tr. Drake and
Drabkin 1969, 317); De axe in peritrochio, Prop. I, Corollary [3], f. 110r; tr. (Monte 1581, f. 106 r;
tr. Drake and Drabkin 1969, 319); De cochlea, Prop. 2, Corollary, f. 128 r; tr. (Monte 1581, f. 125 r;
tr. Drake and Drabkin 1969, 326).
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He thus fully understood the central principle of Galileo’s mechanics, but with
this crucial difference: he saw it as an effect, rather than as a cause.16

Figure 2.1

In his treatises on the wedge and on the screw, Guidobaldo cited Pappus’s
theorem on the inclined plane, since both the wedge and the screw can be reduced
to inclined planes, and Pappus reduced the inclined plane to the lever and thence
to the balance. But significantly, Guidobaldo did not present Pappus’s theorem,
although Pigafetta added it in the commentary to his Italian translation; it is pos-
sible that Guidobaldo was not happy with Pappus’s proof, and that he omitted it
from his Latin text for this reason.17 Pappus had assumed that a certain power C is
needed to move a sphere of weight A on a horizontal plane, and then undertook to
determine the power needed to sustain the same weight on an inclined plane (see
Figure 2.1). This he did by placing one end of a horizontal balance at the center
E of the sphere, the other on its circumference at G, and the fulcrum F directly
above the point of contact L between the sphere and the plane. The weight of
the sphere acts at its center E, so that the balance is in equilibrium and the sphere
is at rest on the plane when this weight is counterbalanced by a second weight B
applied at G such that the ratio of weights is the inverse ratio of their distances EF
and FG from the fulcrum. Next, he assumed that the ratio of a power D, needed

16For Galileo’s statement of the principle, see (Galilei 2002, 45–47); tr. (Drabkin and Drake 1960,
147–149).
17Guidobaldo, Mechanicorum liber, De cuneo, f. 115 r, tr. (Monte 1581, f. 110 r; tr. Drake and
Drabkin 1969, 321); De cochlea, [Prop. 2], ff. 126 r–127 r; tr. (Monte 1581, ff. 121 r–122 r; tr. Drake
and Drabkin 1969, 325–326).
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to move the second weight B on a horizontal plane, to the power C, needed to
move the original weight A on a horizontal plane, will be equal to the ratio of the
weights B to A. The power necessary to move the sphere up the plane, then, is
the sum of these two powers C and D.18

In the Meditatiunculae, Guidobaldo sketched his own version of Pappus’s
theorem on the inclined plane, although with several significant differences. Like
Pappus, Guidobaldo reduced the inclined plane to the lever, though he extended
his proof to include all three classes of levers (see Figures 2.2 a, b and c). Now,
because he was interested only in finding the sustaining power, not the moving
power, he does not assume, as did, that a certain power is needed to move the
weight on a horizontal plane. Instead, he simply finds the ratio of the sustaining
power to the weight of the body as Pappus did, by placing them on the unequal
arms of the balance. And he completely omits Pappus’s crucial last step, of find-
ing the power of moving the second weight on a horizontal plane and adding it to
the power of moving the original weight. This means that the sustaining power
actually has to be equal to or greater than the weight of the sphere itself for planes
that place the fulcrum more than half way from the center of the sphere, and that
on a vertical plane it becomes infinite. Pappus’s theorem at least gives an intu-
itive approximation of how much power is needed to move a body up an inclined
plane, though it too implies that the power needed to move the body up a vertical
plane is infinite; Guidobaldo’s theorem produces paradoxical results for all but
the shallowest planes. His note at the end, that, if the fulcrum is located directly
above or below the center of the sphere, the sustaining power should be equal
to the weight of the sphere, suggests that he was aware of this consequence and
wanted to correct it (see Figure 2.2d).19

18See (Monte 1581, ff. 121 r–v; tr. in part in Drake and Drabkin 1969, 325–326); as Bertoloni Meli
pointed out (Bertoloni Meli 1992, 25, note 42), Drake’s translation mistakenly prints H instead of G
throughout; Pappus’s full proof can be found in translation in (Cohen and Drabkin 1958, 194–196); a
discussion of Guidobaldo’s use of Pappus’s proof can be found in (Bertoloni Meli 2006, 35–37).
19The proof is as follows: “Ducatur GH horizonti equidistans, cui ad rectos angulos ducatur CH, DK,
sitque in hoc circulo constituenda potentia spheram sustinens in G. Sphera vero secetur per centrum et
per C, plano horizonti erecto, quod quidem in sphera circulum efficiat maximum ABC. Sphera enim
ABD habeat centrum D, que subiectum planum EF horizonti inclinatum in C contingat. Potentia in-
venire que datam spheram subjectum planum horizonti inclinatum tangentem in dato puncto sustineat.
Oportet vero potentiam ita in sphera constituere ut circulus maximus per potentiam, et tactum tran-
siens sit horizonti erectus. Intelligatur itaque GH vectis, cuius fulcimentum est in H, cum planum EF
spheram tangat in C. Pondus vero in K esset appensum. Cum enim D sit centrum gravitatis sphere,
erit perinde, ac si in K esset appensum ex dictis in tractatu de vecte nostrorum mechanicorum. Quam
vero proportionem habet GH ad HK, ita fiat gravitas sphere ad potentiam in G. Potentia igitur in G
cognita erit. Ac in prima quidem figura erit primus modus vecte, in secunda secundus, in tertia ter-
tius. Notandum tamen quod si potentia esset in G, ita ut ducta horizonti perpendicularis per centrum
sphere D transiret, ut DG tunc potentia totam sustineret spheram ac propterea ipsi equalis existeret.
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Figure 2.2

Despite his general emphasis on equilibrium, motion and its effects do find
their way into his mechanics, notably in his treatment of the wedge, but only
as secondary causes. In the Mechanicorum liber, after attempting to reduce the
wedge to a pair of levers and thus account for its effectiveness, Guidobaldo adds
the power of the blow striking it as another explanation. The power of the blow,
he explains, depends both on the weight of the hammer and the distance through
which the hammer moves, which is greater the longer the handle. The longer the
handle, then, effectively the heavier the hammer and so the stronger the impulse
of the blow. So far these effects can be seen to arise from the properties of the
lever and thus the balance. But then he adds that the effectiveness of the wedge
also arises in part from the very strong force of percussion, citing Question 19
of the Mechanica, which in fact his explanation echoes. Here he has moved en-

Veluti in puncto quoque B ob eandem causam” (Guidobaldo del Monte, Meditatiunculae de rebus
mathematicis, Paris, BNF, fonds lat. ms 10246, 64; see Tassora 2001, 302–303).
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tirely away from equilibrium as the cause of a mechanical effect and invoked the
unexplained power of percussion.20

Each of the separate treatises on four of the five simple machines ends with
Heron’s problem, that is, to find the conditions under which a given weight can
be moved by a given power using each machine. In the case of the wedge, how-
ever, Heron’s program breaks down. With a wedge, according to Guidobaldo,
any given power cannot move any given weight, since any given power cannot
move any given weight by means of an inclined plane, though he does not ex-
plain exactly why. Further, since a wedge is in effect two opposing levers, as
it splits the load the fulcrums of these levers themselves move and thus fail to
maintain a constant ratio of load to power. In his general comment at the end of
his translation of the Mechanicorum liber, Pigafetta explains that the wedge and
the screw, unlike the other machines, are suitable only for moving weights, not
for sustaining them; and,

Since the powers that move may be infinite [in number], one cannot
give a firm rule for them as may be done for the power that sustains,
which is unique and determined.21

In fact, this is true for all of the machines, for while the conditions for equi-
librium in each case are determinate and subject to an exact mathematical rule,
the conditions for motion are many and indeterminate and thus in principle are
unknowable with any precision.

According to Guidobaldo, Archimedes had clarified the principles of me-
chanics by accepting the explanations in the pseudo-Aristotelian Mechanica for
the power of the lever, but then went further to discover and to demonstrate the
exact relation between weights and distances, which is the sole foundation of
mechanics.22 In the Meditatiunculae, he in fact attempted to prove several of
the questions from the Mechanica using Archimedean principles. The first two
of these are headed Questiones Aristotelis de libra aliter demonstrate (Aristo-
tle’s questions on the balance demonstrated in another way) and begin with a sin-
gle supposition: centrum gravitatis deorsum tendere (the center of gravity tends
downwards). In the two propositions that follow, Guidobaldo proves the stabil-
ity of equilibrium of a balance supported from above, and the instability of one
supported from below, by appealing to the position of the balance’s center of

20See (Monte 1577, f. 118 v–119 r; tr. Monte 1581, f. 114 r–v; tr. Drake and Drabkin 1969, 322–323);
on the force of percussion, see (De Gandt 1987; Laird 1991; Roux 2010).
21“Percioche essendo, che le possanze lo quali movono possano essere infinite, non sene puo asseg-
nare ferma regola, come si farebbe della possanza, che sostiene, laquale è una sola e determinata.”
See (Monte 1581, f. 127 v; tr. Drake and Drabkin 1969, 328); the insertion is mine.
22See (Monte 1588, 4; Frank 2007, 118; see Rose 1975, 234).
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Figure 2.3

gravity; these proofs are in effect identical to those in the Mechanicorum liber.
In the note that follows them, he criticises Alessandro Piccolomini’s Paraphrase
in its Italian translation, and he refers to his own Mechanicorum liber of 1577,
which shows that he was writing this after 1582, when the Italian Paraphrase
was printed.23 On the next two pages there follows a proposition effectively the
same as Proposition 6 of the treatise on the balance of theMechanicorum liber.24
Some twenty pages later, Guidobaldo offered a fuller proof of Aristotle’s Ques-
tion 1, why larger balances are more exact than smaller. This proof makes no
appeal to centers of gravity, but relies entirely on considerations of motion. First
he demonstrates as a lemma, citing the appropriate propositions from Euclid, that
of two equal lines GB and HE dropped perpendicular from the diameter to the
circumference, the line GB in the smaller circle has a smaller ratio to GA than
the line HE in the larger to HD (see Figure 2.3). Then he applies this lemma to
the balance by showing that when a longer and a shorter balance are deflected an
equal vertical distance, in the motion of the longer arm there is a greater propor-
tion of natural (vertical) motion to preternatural (radial) motion, so that the larger
balance is easier to move and is moved more swiftly in the same time by the
same power (see Figure 2.4).25 What is significant about this proof is its appeal
exclusively to motion and displacement rather than to centers of gravity.

23Del Monte, Meditatiunculae, 30; see (Tassora 2001, 266).
24Del Monte, Meditatiunculae, 31–32; see (Tassora 2001, 267–268).
25Del Monte, Meditatiunculae, 55–56; see (Tassora 2001, 292–293); a similar proof is given by
Giuseppe Moletti in his unpublished Dialogue on Mechanics of 1576, for an edition and English
translation of which see (Laird 2000, 97–99).
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Figure 2.4

Guidobaldo’s attempt to take into account the material resistance of real ma-
chines comes up in several notes inspired by questions in the Mechanica con-
cerned with wheels. Question 11 of the Mechanica asked why weights are more
easily moved on rollers than on wheels despite the fact that rollers are smaller in
diameter than wheels; the answer there was because wheels are subject to friction
at the axel. Pietro Catena, in his Universa loca of 1556—and presumably also
in his now-lost lectures on the Mechanica, which Guidobaldo heard in Padua
in 1564—had added to this “physical” explanation a “truly demonstrative” ge-
ometical proof supposedly showing that rollers, with their smaller diameter, make
less contact with the ground than wheels do and so encounter less resistance to
rolling. Guidobaldo came to the opposite conclusion: with the help of a geo-
metrical lemma, he showed why it is in fact easier for a larger wheel to roll over
an obstacle of the same size than for a smaller wheel (see Figure 2.5). Treating
the obstacle effectively as an inclined plane, he reduced the problem to the lever,
again invoking Pappus’s theorem on the inclined plane.26

But in a variation of Question 9 of theMechanica, Guidobaldo attempted to
take account of the friction of the axel mentioned in Question 11. He asks why
weights are in practice more easily moved with larger wheels, meaning in this
case on a windlass. He imagines two equal weights suspended from A and C on
the circumferences of two unequal wheels concentric around center G (see Figure
2.6). Since the weights at A and C are equal, the powers needed to sustain them
in equilibrium at D and B will also be equal. But to move the weights, additional
power must be added at D and B, since the axel resists motion because of contact
and friction, which Guidobaldo represents as a load applied at E. Since the ratio
of BG to FG is greater than the ratio of DG to FG, less power must be added at B

26See (Catena 1556, 81–83; del Monte, Meditatiunculae, cit., 60–61; Tassora 2001, 298–300); that
Guidobaldo heard Catena’s lectures, see (Rose 1975, 222).
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Figure 2.5

to overcome this resistance than at D. Thus weights are moved more easily with
larger wheels.27

These fragments are apparently all that he wrote, or all that survive, in his
attempt to reduce the pseudo-AristotelianMechanica to Archimedean principles,
and they are, at best, a mixed success. But they show several important features
of his approach to mechanics: they show his general determination to bring me-
chanical effects under Archimedean principles (though on occasion he resorted to
motion and speed), and they show how he tried to take into account the material
resistance of real machines. And the material resistance of real machines lies at
the heart of Guidobaldo’s attempt to exclude motion from the causes and princi-
ples of mechanics. A letter he wrote to the mathematician Giacomo Contarini in
1580, the substance of which he repeated shortly afterwards in a letter to Filippo
Pigafetta, the Italian translator of the Mechanicorum liber, offers a clue to this.
Both Contarini and Pigafetta had raised doubts about theoretical results contained
in theMechanicorum liber, since they did not seem to conform to experience. In
his reply to Contarini, Guidobaldo asserted that, if a balance in equilibrium fails
to move when a slip of paper is added to one of its weights, it is not therefore
inaccurate:

where one must consider that the resistance that the material makes
is made when weights are to be moved and not when they are merely
to be sustained, because then the machine neither moves nor turns.28

27Del Monte, Meditatiunculae, 59; see (Tassora 2001, 297–298).
28“dove è da considerare che la resistanza che fa la materia lo fa quando si hanno da mover i pesi
e non quando se hanno da sostenere solamente, perché all’hora l’instrumento non si move né gira.”
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Figure 2.6

Because resistance arises only when there is motion, according to
Guidobaldo, a balance in equilibrium corresponds exactly to abstract mathemati-
cal theory; but to disturb that balance, to set it into motion, is to introduce all the
irregularities and uncertainties of matter. And working machines are precisely
such disturbed equilibria.29 This view of motion as the result of disturbed
equilibrium and as subject to unaccountable material hindrances seems to lie at
the root of his rejection of the dynamical tradition of mechanics represented by
Jordanus and Tartaglia. Since motion is the result of disequilibrium, it cannot
be the cause of either equilibrium or disequilibrium. And once equilibrium
is disturbed, the resulting motion is indeterminate because of the material
hindrances it is subject to. However true their conclusions, then, the fundamental
error of Jordanus and Tartaglia was to mistake effects for causes.

Guidobaldo’s main contribution to the renaissance of mechanics in the
sixteenth century was to take the vague and wide-ranging scope of mechanics
suggested by the pseudo-Aristotelian Mechanica and restrict it to Archimedean
explanations of Heron’s five simple machines. In his attempt to found a demon-
strative, mathematical science of mechanics, the sole principle he recognized
was the principle of the equilibrium of centers of gravity as established by
Archimedes. Only equilibrium is susceptible to exact mathematical treatment;

Guidobaldo del Monte to Giacomo Contarini, Pesaro, 9 October and 18 December 1580, ed. Antonio
Favaro (1899-1900); quoted in part in (Gamba andMontebelli 1988, 75–76); for the letter to Pigafetta,
see (Keller 1976, 28).
29On this point see (Van Dyck 2006, 398–399).
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motion and speed, since they are the results of disequilibrium and are subject to
material hindrances, are in principle indeterminate and thus unknowable with
any great precision. But they can be known to some extent, and mechanics is
the science of knowing the actual motions and effects of real machines within
these natural limits. This, I think, accounts for the apparently paradoxical nature
of Guidobaldo’s mechanics, with its insistance on both extreme mathematical
rigour and actual practical machines. As for impetus and percussion—themselves
merely the results of motion—they seem to lie outside of Guidobaldo’s mechan-
ics, and in this sense Rose’s conclusion about his unbridgeable barrier between
statics and dynamics holds true. If there could be an exact science of motion that
included such things—and Guidobaldo’s notes on projectile motion and falling
bodies suggest that he did not entirely despair of one30—it would be entirely
separate from the science of real machines that he attempted to establish on
Archimedean principles.
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